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ABSTRACT
As the size of an RFID tag becomes smaller and the price
of the tag gets lower, RFID technology has been applied to
a wide range of areas. Recently, RFID has been adopted in
the business area such as supply chain management. Since
companies can get movement information for products easily
using the RFID technology, it is expected to revolutionize
supply chain management. However, the amount of RFID
data in supply chain management is huge. Therefore, it re-
quires much time to extract valuable information from RFID
data for supply chain management.

In this paper, we define query templates for tracking queries
and path oriented queries to analyze the supply chain. We
then propose an effective path encoding scheme to encode
the flow information for products. To retrieve the time in-
formation for products efficiently, we utilize a numbering
scheme used in the XML area. Based on the path encod-
ing scheme and the numbering scheme, we devise a storage
scheme to process tracking queries and path oriented queries
efficiently. Finally, we propose a method which translates
the queries to SQL queries. Experimental results show that
our approach can process the queries efficiently. On the av-
erage, our approach is about 680 times better than a recent
technique in terms of query performance.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

General Terms
Design, Performance

Keywords
RFID, Supply Chain Management, Path Encoding Scheme,
Region Numbering Scheme, Prime Number
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1. INTRODUCTION
Different from existing technologies such as barcode sys-

tems and magnetic card systems that require contact be-
tween a detector and an object, it is possible for RFID (Ra-
dio Frequency IDentification) readers to detect RFID tags
without contact in RFID systems. As the size of an RFID
tag becomes smaller and the price of the RFID tag gets
lower, RFID technology has been applied to many areas.
A typical example is supply chain management. In supply
chain management, an RFID tag is attached to a product
and RFID readers in the detection region generate RFID
data that is in the form of (tag identifier 1, location, time)
when the product with the RFID tag moves or stays near
the detection region. As the flow of the product is detected
easily using the RFID technology, it is observed to revolu-
tionize supply chain management.

The RFID data generated in various regions is sent to the
central server. It can be grouped by the tag identifier and be
transformed into stay records in the form of (tag identifier,
location, start time, end time). While raw RFID data has
many duplicates, transformed data (i.e., stay records) does
not have duplicates. We can represent how long a tag stays
at a location by start time and end time of stay records.
Stay records for each tag compose a trace record that gives
us the movement history with the time information for the
tag. In this paper, we will use trace records as the basic
building block to store RFID data in the central server.

As a straightforward method to store RFID data, we can
store it in the relational table BASIC TABLE(TAG ID, LOC,
START TIME, END TIME), where TAG ID represents the
tag identifier, LOC the location, START TIME the time
when the tag enters the location, and END TIME the time
when the tag leaves the location. Queries to analyze the sup-
ply chain are related to the product transition. For example,
a manager may ask the query ”Find the number of notebooks
which go through locations Factory1, Distribution Center1,
and Store1.”To evaluate the query with BASIC TABLE, we
must perform the self-join of BASIC TABLE many times.
Also, since the size of BASIC TABLE is big, it requires much
time to execute the query with BASIC TABLE.

To support efficient path dependent aggregates for RFID
data, Gonzalez et al. propose a new warehousing model [10].
In the model, STAY TABLE(GID, LOC, START TIME,

1As a tag identifier, RFID systems use EPC (Electronic
Product Code) [1] which is a coding scheme of RFID tags
to identify them uniquely.



END TIME, COUNT) is used to store RFID data efficiently.
In many RFID applications, products usually move together
in large groups at the early stages, and move in small groups
at the later stages. Therefore, they represent stay records
with the same location and time by one record such as (tag
identifier list, location, start time, end time, the number of
tags with the same location and time). To link locations
efficiently (i.e., to perform self-joins of STAY TABLE effi-
ciently), the tag identifier list is encoded by the prefix en-
coding scheme. The value by the prefix encoding scheme
corresponds to GID in STAY TABLE. To know whether two
locations A and B are linked, they check whether the GID
corresponding to A is the prefix of the GID corresponding
to B.

Therefore, they reduce the size of the table significantly
and improve the join cost. However, if products do not move
together in large groups, the size of the table will not be re-
duced largely. In this case, the performance of the approach
in [10] does not have a great benefit compared to that of the
approach with BASIC TABLE. Also, since the prefix encod-
ing scheme uses the string comparison in joining tables, it
needs much more time than the number comparison. Thus,
we propose a new approach to store RFID data and process
queries for supply chain management. Since queries related
to the object transition in supply chain management was
not defined formally in [10], we first define query templates
for tracking and path oriented queries to analyze the supply
chain. Then, to solve the above drawbacks, we propose a
new approach.

While [10] focuses on groups in which products move to-
gether, we focus on the movement for each tag. The move-
ment of one tag makes a path in supply chain management.
Therefore, we devise a path encoding scheme for processing
tracking queries and path oriented queries efficiently. The
proposed path encoding scheme can encode a path with only
two numbers (i.e., Element List Encoding Number and Or-
der Encoding Number) which are motivated by [22]. In [22],
to determine whether a relationship exists between two ele-
ments in an XML tree, the unique property of prime num-
bers is used. And, to preserve the global order for elements,
simultaneous congruence values are used. In this paper, we
use the unique property of prime numbers to encode nodes
in the path, and simultaneous congruence values to encode
ordering between nodes in the path. Our encoding scheme is
based on the Fundamental Theorem of Arithmetic and the
Chinese Remainder Theorem. Using the proposed path en-
coding scheme, we can efficiently retrieve paths which satisfy
the path condition in a query. To store the time information
related to the movement, we separate the time information
from trace records. We use the region numbering scheme
[23] widely used in the XML area in order to retrieve the
time information efficiently. Based on the path encoding
scheme and the region numbering scheme, we devise a new
relational schema to store the path information and the time
information for tags.

1.1 Contributions
The contributions of the paper are as follows:

• Encoding Scheme to Encode the Flows for Prod-
ucts To support tracking queries and path oriented
queries efficiently, we propose a path encoding scheme
for flows of products. Element List Encoding Number
is computed by the product of the prime numbers cor-

responding to the nodes in the path. Based on the Chi-
nese Remainder Theorem, Order Encoding Number is
computed. Using the two numbers, we can easily find
the paths which satisfy the path condition.

• Efficient Relational Schema and Query Trans-
lation We propose an efficient relational schema with
the path encoding scheme and the region numbering
scheme. Based on the schema, we propose a method
to translate tracking queries and path oriented queries
into SQL queries.

• Defining of Query Templates to Analyze the
Supply Chain We define query templates to analyze
the supply chain. We consider query templates for
tracking queries and path oriented queries. For path
oriented queries, we provide a grammar to effectively
express the path condition for products like XPath [2].

• Experimentation to validate our proposed ap-
proach Through experiments, we show that our stor-
age scheme and query processing are efficient. Experi-
mental results show that the query performance of our
approach is on the average 680 times and maximum
14278 times better than a recent approach.

1.2 Organizations
The rest of the paper is organized as follows. In Section

2, we discuss the related work on managing RFID data. In
Section 3, we deal with data formats and define query tem-
plates for tracking queries and path oriented queries in sup-
ply chain management. We show the architecture to store
RFID data and process queries in Section 4. We describe
our path encoding scheme in Section 5 and devise a new rela-
tional schema in Section 6. We propose a method to trans-
late tracking queries and path oriented queries into SQL
queries in Section 7, and experimentally show the superior-
ity of our approach in Section 8. We make a conclusion in
Section 9.

2. RELATED WORK
In contrast to the initial study for RFID which focuses on

the device, much work has been done recently to manage
RFID data as the amount of RFID data becomes large.

The system architecture for managing RFID data is dis-
cussed in [7, 8, 11]. Bornhövd et al. [7] describe the Auto-ID
infrastructure (Device/Deivce Operation/Business Process-
ing Bridging/Enerpise application Layer) which integrates
data from smart items (e.g., RFID, sensor) with existing
business processes and Chawathe et al. [8] suggest a layered
architecture for managing RFID data (Tag/Reader/Savant/
EPC-IS/ONS server). In [11], two software layers are pro-
posed, the ubiquity agent architecture and the tag centric
RFID application architecture. The ubiquity agent archi-
tecture is for a general-purpose core architecture and the
tag centric RFID application architecture is for the RFID
application architecture that specializes the generic agent
architecture.

RFID data is generated in the form of streaming data and
then it is stored in a database for data analyses. Therefore,
there exists two types of approaches for managing RFID
data. One approach is on-line processing for RFID data
and is related to data stream processing [20, 5, 4, 13]. The



other approach is off-line processing and is related to stored
data processing [6, 3, 12, 16, 19, 10, 9].

In the aspect of viewing RFID data as data streams, event
processing and data cleaning have been studied. RFID data
has a temporal property and it is important in analyzing
data. Therefore, temporal RFID event can be defined. How-
ever, it cannot be well supported by traditional ECA (Event-
Condition-Action) rule systems. Therefore, Wang et al. [20]
formalize the specification and semantics of RFID events and
rules including temporal RFID events. Also, they propose
a method to detect RFID complex events efficiently. Bai
et al. [5] explore the limitation of SQL in supporting the
temporal event detection and discuss an SQL-based stream
query language to provide a comprehensive temporal event
detection.

Inevitably, RFID data has some errors such as duplicate
readings and missing readings. To rescue missing readings,
the first declarative and adaptive smoothing filter for RFID
data (SMURF) [13] is proposed. SMURF controls the win-
dow size of the smoothing filter adaptively using statistical
sampling. Also, Bai et al. [4] propose several methods to
filter RFID data.

In the aspect of viewing RFID data as stored data, there
exist various approaches to manage RFID data. Since RFID
readers can detect RFID tags easily and quickly, object
tracking using RFID is widely used. To trace tag locations,
a new index is proposed in [6]. Ban et al. [6] point out the
problem of representing the trajectories in RFID data and
propose a new data model to solve it. Also, they devise a
new index scheme called the Time Parameterized Interval
R-Tree as a variant of the R-Tree. To represent a collec-
tion of tag identifiers generated by item tracking applica-
tions compactly, the bitmap data type is proposed and a set
of bitmap access and manipulation routines is provided in
[12]. Agrawal et al. [3] deal with the tracing of items in
distributed RFID databases. They introduce the concept of
traceability networks and propose an architecture for trace-
ability query processing in distributed RFID databases.

Since RFID data has a temporal property, it is difficult to
model RFID data using the traditional ER-model. There-
fore, Wang et al. [19] propose a new model called Dy-
namic Relationship ER Model (DRER) which simply adds a
new relationship (dynamic relationship). They also propose
methods to express temporal queries based on DRER using
SQL queries. Although we can use the above techniques such
as index and bitmap data type in order to process tracking
queries and path oriented queries, it is inefficient to process
the queries since they do no consider the object transition.

Gonzalez et al. [10] propose a new warehousing model
for the object transition and a method to process a path
selection query. To get aggregate measures on the path, they
join tables many times. Therefore, they use compression
in order to reduce the join cost. However, the proposed
compression is useless if products do not move together in
large groups.

3. PROBLEM DEFINITION
Raw RFID data consists of a set of triples (TagID, Loc,

Time), where

• ”TagID” is the electronic product code (EPC) of the
tag and used for identifying the tag uniquely.

• ”Loc” is the location of the RFID reader which detects

the tag

• ”Time” is the time of detecting the tag

We translate raw RFID data generated in supply chain
management into a set of stay records that do not have du-
plicates. A stay record has the form (TagID, Loc, StartTime,
EndTime), where

• ”TagID” and ”Loc” are the same as above

• ”StartTime” is the time when the tag enters the loca-
tion

• ”EndTime” is the time when the tag leaves the location

From stay records of a tag, we can construct the trace
record of the tag in the form of TagID : L1[S1, E1]− >
· · · − > Lk[Sk, Ek], where L1, · · · , Lk are the locations where
the tag is detected, Si is StartT ime at the location Li, Ei

is EndTime at the location Li, and Li[Si, Ei] is ordered by
Si. We deal with a set of trace records instead of raw RFID
data in our systems.

Example 1. Figure 1-(a) shows raw RFID data and Fig-
ure 1-(b) a set of trace records corresponding to raw RFID
data. From (tag1, A, 2) and (tag1, A, 3), we get the stay
record (tag1, A, 2, 3). Similarly, we can compute stay records
(tag1, B, 5, 7), and (tag1, C, 8, 9) for tag1. Finally, we
can compute the trace record, tag1 : A[2, 3]− > B[5, 7]− >
C[8, 9].

(tag1, A, 2), (tag4, A, 2), (tag2, A, 2), (tag3, A, 2), (tag1, A, 3), 

(tag2, A, 3), (tag4, A, 3), (tag3, A, 3), (tag3, B, 5), (tag1, B, 5), 

(tag2, B, 5), (tag4, B, 5), (tag1, B, 6), (tag4, B, 6), (tag3, B, 7), 

(tag1, B, 7), (tag2, B, 7), (tag4, B, 7), (tag2, C, 8), (tag1, C, 8), 

(tag3, C, 8), (tag3, C, 9), (tag1, C, 9), (tag2, C, 9), (tag4, C, 13), 

(tag4, C, 14), (tag4, C, 16)

tag1: A[2,3]->B[5,7]->C[8,9]

tag2: A[2,3]->B[5,7]->C[8,9]

tag3: A[2,3]->B[5,7]->C[8,9]

tag4: A[2,3]->B[5,7]->D[13,16]

(a) Raw data

(b) Trace records

Figure 1: Raw Data and Trace Records

To analyze the supply chain, we use queries about the ob-
ject transition. Although [10] mentions the path selection
query, it is insufficient to express the relationship between
locations. Therefore, we define query templates to analyze
the supply chain. We consider query templates for tracking
queries and path oriented queries. The tracking query finds
the movement history for the given tag. The path oriented
query is classified into the path oriented retrieval query and



the path oriented aggregate query. The path oriented re-
trieval query finds tags that satisfy given conditions (includ-
ing a path condition) and the path oriented aggregate query
computes the aggregate value for tags that satisfy given con-
ditions (including a path condition). In query templates for
the path oriented retrieval query and the path oriented ag-
gregate query, we provide a grammar to effectively express
the path conditions for products like XPath [2].

Figure 2 shows the formal definition for query templates
in supply chain management. There are three query tem-
plates (tracking query, path oriented retrieval query, path
oriented aggregate query). The query template for a track-
ing query has only a tag identifier to trace the tag. The path
oriented retrieval query consists of Path Condition and Info
Condition. The path oriented aggregate query needs Ag-
gregate Function as well as Path Condition and Info Con-
dition. Path Condition uses a grammar similar to XPath.
Path Condition consists of a Step sequence. Each Step has
parent axis (/) or ancestor axis (//). Also, each Step may
have Time Conditions. Time Condition is the predicate for
StartT ime and EndTime. The argument for Aggregate
Function (i.e., Time Selection) allows only the time infor-
mation. We can express various queries in supply chain
management using the query templates in Figure 2. We
show some examples for tracking queries and path oriented
queries in Figure 3.

[1] Tracking Query= <TagID = id>

[2] Path Oriented Retrieval Query = <PathCondition, InfoCondition>

[3] Path Oriented Aggregate Query =

<AggregateFunction, PathCondition, InfoCondition>

PathCondition -> (Step)*

Step-> /Loc[TimeCondition]   |  //Loc[TimeCondition]

AggregateFunction->count() | sum(TimeSelection) |                                                                               

avg(TimeSelection) | max(TimeSelection) | 

min(TimeSelection)

TimeSelection -> Loc.StartTime | Loc.EndTime | 

Loc.EndTime – Loc.StartTime

---------------------------------------------------------------------------------------

* Info Table has the information for tags such as product name, manufacturer, and

price. Info Condition is the predicate for the attributes of Info Table and may be 

empty (Ex. Product Name = ‘Computer’, Price>10000)

** Time Condition is the predicate for start time and end time. 

(Ex. StartTime > 5,  EndTime<10 )

*** Loc is the location name of a detection region.

Figure 2: Query Templates for Tracking Queries and
Path Oriented Queries

Our problem definition is as follows: For an environment
where there is a large amount of RFID data in supply chain
management and users issue tracking queries and path ori-
ented queries, devise an efficient storage scheme and pro-
cessing method for the queries.

4. ARCHITECTURE
Figure 4 shows the architecture to store RFID data and

process tracking queries and path oriented queries in supply

Semantics Query

Find the movement history for the tag 
whose identifier is XXX. (Tracking Query)

TagID = XXX

Find the tags which go through locations 
L1, ..., Ln . (Path Oriented Retrieval Query)

<//L1//...//Ln>

Find the tags which go through locations 
L1, ..., Ln where the duration at L1 is less 
than T. (Path Oriented Retrieval Query)

<//L1 [(EndTime-
StartTime)<T]//..//Ln>

Find the average duration time at L2 for 
tags which go from L1 directly to L2. (Path 
Oriented Aggregation Query)

<avg(L2.EndTime -
L2.StartTime), //L1/L2>

Find the minimum start time at L2 for 
notebooks which go from L1 to L2. (Path 
Oriented Aggregation Query)

<min(L2.StartTime), 
//L1//L2, 
ProductName=‘notebook’>

Figure 3: Examples for Tracking Queries and Path
Oriented Queries

Trace Records

Storage Scheme
(Location, Prime Number)

Memory

Query Translator

RDBMS

Raw Data Query Result

Figure 4: Architecture

chain management. The central server receives raw RFID
data from various regions. The raw RFID data is trans-
formed into trace records after sorting RFID data by the
tag identifier and the time. We store trace records using
an RDBMS since the RDBMS is a well-matured DBMS and
our encoding scheme can be well implemented on it. Since
we use prime numbers instead of location names, (Location,
Prime Number) list is kept in memory as a hash structure.
If a user requests a tracking or path oriented query, Query
Translator translates it into an SQL query. Then, the SQL
query is processed on an RDBMS and the result is sent to
the user.

5. PATH ENCODING SCHEME FOR TAG
MOVEMENTS

In this section, we devise a new path encoding scheme
to represent tag movements compactly and efficiently. A
product with an RFID tag goes through many locations.
Its movements are represented by trace records in the form
of TagID : L1[S1, E1]− > · · · − > Lk[Sk, Ek]. In supply
chain management, it is important to analyze the object
transition. To manage the object transition efficiently, we
first extract the flow information from trace records and it
composes the path L1− > · · · − > Lk. We then propose a
path encoding scheme for encoding the path L1− > · · · − >



Lk in order to analyze the object transition efficiently.
We can represent different paths for each product by a

tree structure. Figure 6 shows the tree structure for trace
records in Figure 5. We assume that there is no cycle in a
path. However, it is allowed that different paths include the
same location (See the node C in Figure 6). The path of
each tag becomes a path from the root in the tree by the
elimination of duplicate nodes. The numbers beside nodes
are prime numbers which will be explained subsequently. In
Figure 6, the dark node means that there are tags whose
final location is the node. We store all paths ending at dark
nodes, which are A− > B− > C, A− > B− > D, A− > E,
A− > E− > C, and A− > D. Although a huge amount of
RFID data is generated, the size of the tree is small.

tag1: A[2,3]->B[5,7]->C[8,9]

tag2: A[2,3]->B[5,7]->C[8,9]

tag3: A[2,3]->B[5,7]->C[8,9]

tag4: A[2,3]->B[5,7]->D[13,16]

tag5: A[2,3]->B[7,8]->D[14,18]

tag6: A[2,3]->E[4,6]->C[7,8]

tag7: A[2,3]->E[4,6]->C[7,8]

tag8: A[2,3]->E[4,6]

tag9: A[2,3]->D[4,5]

tag10: A[2,3]->D[5,6]

Figure 5: Example of Trace Records

A

B E D

C D C

2

3

55 7

711

Figure 6: Tree Structure for the Trace Records

To encode a path, we can consider various techniques in
the XML area [23, 14, 18, 21, 17, 15, 22]. However, in those
techniques, it is inefficient to process queries which have
many ancestor-descendant relationships such as ”Find the
tags which go through locations L1, L2, L3 (//L1//L2//L3).
In supply chain management, we need such queries to ana-
lyze the flows of tags. Before proposing a new path encoding
scheme, we introduce two well known theorems.

Theorem 1. The Fundamental Theorem of Arithmetic
(The Unique Factorization Theorem): Any natural number
greater than 1 is uniquely expressed by the product of prime
numbers.

For example, 231 = 3×7×11 and there does not exist the
product of any other prime number combination for 231.

Theorem 2. The Chinese Remainder Theorem: Suppose
that n1, n2, · · · , nk are pairwise relatively prime numbers.
Then, there exists X between 0 and N(= n1n2 · · ·nk) solving
the system of simultaneous congruences.

X mod n1 = a1

X mod n1 = a1

· · ·
X mod nk = ak

For example, consider the system of simultaneous congru-
ences such as X mod 3 = 2, X mod 7 = 3, and X mod 11 =
2. Then, by Theorem 2, there exists X between 0 and
3 × 7 × 11. In this example, X is 101. We can compute
X using the extended Euclidean algorithm.

Let L1− > L2− > ...− > Lk be a path to encode.
Suppose that each location is associated with a different
prime number, and the prime number for location Li is de-
noted by Prime(Li). Then, we define Element List En-
coding Number for the path L1− > L2− > ...− > Lk as
Prime(L1) × Prime(L2) × · · · × Prime(Lk). If Element
List Encoding Number is given, we can know locations that
compose the path since Element List Encoding Number is
uniquely factorized by the product of prime numbers corre-
sponding to locations by Theorem 1. However, although we
know locations in the path by Element List Encoding Num-
ber, we can not know the ordering between locations. To
encode the ordering information compactly and efficiently,
we consider the system of simultaneous congruences.

X mod Prime(L1) = 1

X mod Prime(L2) = 2

· · ·
X mod Prime(Lk) = k

1, 2, · · · , and k are the levels (i.e., orders) of the nodes
corresponding to L1, L2, · · · , and Lk, respectively. Since
Prime(L1), P rime(L2), · · · , and Prime(Lk) are prime num-
bers, they are pairwise relatively prime numbers. Thus,
by Theorem 2, there exists X between 0 and Prime(L1) ×
Prime(L2)×· · ·×Prime(Lk) solving the system of the above
simultaneous congruences. We call X Order Encoding Num-
ber. Given Order Encoding Number, we can know the order
information for any location Li in the path by computing
X mod Prime(Li). Our use of prime numbers is similar to
that in [22]. However, [22] assigns different prime numbers
to each element in an XML tree which can have millions of
elements while our approach assigns different prime num-
bers to different locations in a tree for trace records which
has at most a few hundred locations. Therefore, in a typical
application, [22] generates extremely large prime numbers.
Furthermore, [22] orders entire elements of an XML tree,
while we order only the locations on a path whose length is
much smaller than the tree for trace records.

Therefore, we can encode the path using Element List
Encoding Number and Order Encoding Number. Although
a path condition has multiple ancestor-descendant relation-
ships, we can find whether a path satisfies the path con-
dition in Figure 2 by checking some simple mathematical



conditions. We will explain how we process tracking queries
and path oriented queries efficiently using the Element List
Encoding Number and Order Encoding Number in Section
7.

Example 2. Assume that in Figure 6, the prime numbers
corresponding to A, B, C, D, and E are 2, 3, 5, 7, and 11.
Consider the path A− > B− > C. Element List Encoding
Number for the path is 2 × 3 × 5 = 30. To compute Order
Encoding Number, we must compute X such that X mod 2 =
1, X mod 3 = 2, and X mod 5 = 3. By Theorem 2, there
exists X between 0 and 30. In this case, X = 23. Similarly,
we encode other four paths, and get Element List Encoding
Numbers and Order Encoding Numbers for the paths.

Even though we can store the flow information for prod-
ucts effectively using the path encoding scheme, we did not
discuss the time information for products yet. To store the
time information for products, we construct the time tree
from trace records in which the node has the start time and
end time as well as the location.

In the time tree, we say that two paths are the same if the
flows for locations are the same as well as the time informa-
tion (start time and end time) for locations is the same.

Figure 7 shows the time tree constructed from trace records
in Figure 5. The construction of the time tree is the same
as that of the tree for the trace records except that the
stay records with the same location become different nodes
if their time information is different. See B[5,7] node and
B[7,8] node in Figure 7. Although two nodes have the same
location, they are classified as different nodes since they have
the different time information.

To retrieve the time information efficiently, we store num-
bers with nodes in the time tree using the region number-
ing scheme [23] which assigns a node two values, Start and
End. Start and End are assigned consecutively during the
depth-first search. The region numbering has the prop-
erty that node A is the ancestor of node B if and only if
A.Start<B.Start and B.End<A.End. In order to know the
region numbers of nodes associated with a tag, we attach
the tag to the node corresponding to the final location of the
trace record of the tag. Thus, the region number correspond-
ing to the final node in the trace record of the tag is assigned
to the tag. In order to get the time and location information
for tag 6 in Figure 7, we see the region number correspond-
ing to the final node in the trace record of tag 6. For the final
node C[7,8] for tag 6, its region number is [13,14]. There-
fore, we retrieve nodes which satisfy Start≤13 and End≥14.
Such nodes are A[2,3], E[4,6], and C[7,8]. Therefore, we can
retrieve the time information for tag 6 efficiently. There are
more sophisticated region numbering schemes, however the
incorporation of them is straightforward.

6. SCHEMA FOR TRACKING QUERIES
AND PATH ORIENTED QUERIES

In this section, we devise a relational schema to store
RFID data based on the path encoding scheme and the re-
gion numbering scheme. The schema is shown in Figure 8.
PATH TABLE, TAG TABLE, and TIME TABLE are re-
lated to the trace records and INFO TABLE is related to
the product information (e.g., product name, manufacturer,
price).

A[2,3]

B[5,7]

C[8,9] D[13,16]

B[7,8]

D[14,18]

E[4,6]

C[7,8]

D[4,5] D[5,6]

(1,20)

(2,7)

(3,4) (5,6)

(8,11)

(9,10) (13,14)

(12,15) (16,17) (18,19)

Figure 7: Time Tree Structure for the Trace Records

PATH_ID ELEMENT_ENC ORDER_ENC

TAG_ID PATH_ID START END TYPE

START END LOC START_TIME END_TIME

TYPE PRODUCT_NAME MANUFACTURER PRICE

PATH_TABLE

TAG_TABLE

TIME_TABLE

INFO_TABLE

Figure 8: Relational Schema for Supply Chain Man-
agement

PATH TABLE stores the path information using the en-
coding scheme in Section 5. In PATH TABLE, the attribute
ELEMENT ENC corresponds to Element List Encoding Num-
ber and ORDER ENC Order Encoding Number. TIME
TABLE stores the time information for trace records using
the region numbering scheme. In TIME TABLE, START
and END are Start and End in the region numbering scheme.
LOC is the location. START TIME and END TIME cor-
respond to the start time and end time in the time tree.
TAG TABLE has two identifiers for path and time informa-
tion. PATH ID is the identifier for the path information and
(START, END) is the identifier for the time information.
And, TYPE is for the product information. INFO TABLE
stores the information of products. In this paper, we do not
focus on INFO TABLE.

Figure 9 shows the algorithm to store trace records us-
ing the relational schema. As the input for the algorithm,
trace records are given. To fill PATH TABLE, we con-
struct the tree from the paths of the trace records tr us-
ing constructTree(Tree tree, TraceRecord tr) (Line 2). In
constructTree(Tree tree, TraceRecord tr), if there is not the
path for tr in tree, it inserts the new path into tree, returns
path id of the new path and sets store flag to FALSE. Oth-
erwise, it returns path id of the path and sets store flag to
TRUE. If store flag is FALSE, we insert Element List En-
coding Number and Order Encoding Number for the path
into PATH TABLE (Line 4). In Line 5, we insert tag identi-
fier and path id into TEMP PATH TABLE. TEMP PATH
TABLE is used to fill TAG TABLE later.

To fill TIME TABLE, we construct the time tree from the
trace records tr using constructTimeTree(TimeTree time tree,
TraceRecord tr) (Line 6-7). In constructTimeTree(TimeTree
time tree, TraceRecord tr), if there is not tr in time tree, it
inserts the new trace record into time tree. After the con-



Input: trace records tr
begin
1: for i=0; i<the number of trace records; i++
2:   <path_id, store_flag>:=constructTree(tree, tr[i])
3:   if store_flag == FALSE
4:     store the path of trace record tr[i] in PATH_TABLE        

using the encoding scheme 
5:   store (tag identifier from tr[i], path_id)  in

TEMP_PATH_TABLE 

6: for i=0; i<the number of trace records; i++     
7:   constructTimeTree(time_tree, tr[i])
8: assign region numbers to nodes in time_tree

9: while traversing nodes in time_tree by the breath-first search
10:   store nodes of time_tree in TIME_TABLE
11:   store (tag identifier, region numbers for node) in 

TEMP_TIME_TABLE for all tags attached to node

12: after joining TEMP_PATH_TABLE and         
TEMP_TIME_TABLE on TAG_ID, fill TAG_TABLE

end

Figure 9: Algorithm to Store Trace Records using
the Relational Schema

struction of time tree, we assign region numbers to nodes
in time tree (Line 8). Then, we store (START, END, LOC,
START TIME, END TIME) in TIME TABLE (Line 10) by
traversing nodes in time tree by the breath-first search. If
there are tags attached to a node, we store (tag identifier,
region number for the node) in TEMP TIME TABLE (Line
11). Finally, to fill TAG TABLE, we join TEMP PATH
TABLE and TEMP TIME TABLE on TAG ID (Line 12).

Figure 10 shows the status of tables after storing trace
records in Figure 5 by the algorithm in Figure 9. Since
there are 5 different paths for trace records in Figure 5, Ele-
ment List Encoding Numbers and Order Encoding Numbers
of 5 paths are stored in PATH TABLE. As shown in Figure
7, the time tree for trace records has 10 nodes. The infor-
mation for 10 nodes is stored in TIME TABLE. Also, the
path identifier and the time identifier for 10 tags are stored
in TAG TABLE.

7. QUERY TRANSLATION
Based on the schema, we provide a method to process

tracking queries and path oriented queries. Since we store
RFID data using an RDBMS, we translate tracking queries
and path oriented queries into SQL queries. We then can
easily process the queries by executing the SQL queries.

7.1 Tracking Query
We can process a tracking query efficiently using the rela-

tional schema in Section 6. To trace a tag, we get Element
List Encoding Number and Order Encoding Number corre-
sponding to the tag. To get them, we join PATH TABLE
and TAG TABLE. Figure 11 shows the SQL query to get El-
ement List Encoding Number and Order Encoding Number
corresponding to the tag with TagID = my tag id.

To know locations in the flow of the tag, we factorize El-
ement List Encoding Number. We then order the prime

PATH_ID ELEMENT
_ENC

ORDER
_ENC

1 30 23

2 42 17

3 110 13

4 22 13

5 14 9

TAG_ID PATH_ID START END TYPE

tag1 1 3 4

tag2 1 3 4

tag3 1 3 4

tag4 2 5 6

tag5 2 9 10

tag6 3 13 14

tag7 3 13 14

tag8 4 12 15

tag9 5 16 17

tag10 5 18 19

PATH_TABLE TAG_TABLE

START END LOC START_TIME END_TIME

1 20 A 2 3

2 7 B 5 7

8 11 B 7 8

12 15 E 4 6

16 17 D 4 5

18 19 D 5 6

3 4 C 8 9

5 6 D 13 16

9 10 D 14 18

13 14 C 7 8

TIME_TABLE

Figure 10: Status of Tables after Storing Trace
Records

SELECT P.ELEMENT_ENC, P.ORDER_ENC

FROM PATH_TABLE P, TAG_TABLE T

WHERE T.TAG_ID = my_tag_id AND

T.PATH_ID = P.PATH_ID

Figure 11: SQL Query for the Tracking Query

number factors P1, · · · , Pk by computing Order Encoding
Number mod Pi. We finally transform the prime number
into the location name corresponding to it.

Though the SQL query in Figure 11 has the join between
PATH TABLE and TAG TABLE, it takes a little time to
execute the query since the query has the selection predicate
for TAG TABLE (T.TAG ID = my tag id) and there is only
one tuple that satisfies the predicate. Therefore, we can
process tracking queries efficiently.

7.2 Path Oriented Retrieval Query
Although the path condition in a path oriented retrieval

query has many ancestor-descendant relationships, we can
easily find paths that satisfy the path condition by check-
ing mathematical conditions. Therefore, we can process
path oriented retrieval queries efficiently with our relational
schema.

By Theorem 1, the path contains locations L1, L2, · · · , Lk

if and only if ELEMENT ENC mod (L1×L2×· · ·×Lk) = 0.
Therefore, if the path condition contains locations L1, L2, · · · ,
Lk, we insert ELEMENT ENC mod (L1×L2×· · ·×Lk) = 0



into the where clause in the SQL query. To determine the
ancestor-descendant relationship or the parent-child rela-
tionship, we use Order Encoding Number. Consider two
adjacent steps in the path condition and let locations of
the two steps be La and Lb. If La and Lb are in the
ancestor-descendant relationship (i.e., La//Lb), we insert
ELEMENT ENC mod Prime(La) < ELEMENT ENC mod
Prime(Lb) into the where clause in the SQL query. If La

and Lb are in the parent-child relationship (i.e., La/Lb), we
insert ELEMENT ENC mod Prime(La)+1=ELEMENT ENC
mod Prime(Lb) into the where clause.

After finding the paths that satisfy the path condition,
we join PATH TABLE and TAG TABLE on TAG ID to
get tags. Figure 12 shows the SQL query corresponding
to the path oriented retrieval query <//A//B/C>. In Fig-
ures 12 through 17, pA and pB and pC denote Prime(A),
Prime(B), and Prime(C), respectively.

SELECT T.TAG_ID

FROM PATH_TABLE P, TAG_TABLE T

WHERE MOD(P. ELEMENT_ENC, pA*pB*pC) = 0 AND

MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB)  

AND

MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC) 

AND P.PATH_ID = T.PATH_ID

Figure 12: SQL Query for <//A//B/C>

Path oriented retrieval queries may have time conditions.
If the queries have time conditions, we join TAG TABLE
and TIME TABLE. We can retrieve the time information ef-
ficiently using the property of the region numbering scheme.
We insert the following statement into the where clause in
the SQL query for time conditions.

TIME TABLE.LOC=’location name’ AND

TIME TABLE.START≤TAG TABLE.START AND

TAG TABLE.END≤TIME TABLE.END AND

Time Conditions in the Step

Figure 13 shows the SQL query corresponding to the path
oriented retrieval query

<//A//B[(EndTime-StartTime)<10]/C>.

SELECT T.TAG_ID

FROM PATH_TABLE P, TAG_TABLE T , TIME_TABLE S

WHERE MOD(P. ELEMENT_ENC, pA*pB*pC) = 0 AND

MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC,pB) 

AND

MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC)

AND P.PATH_ID = T.PATH_ID AND S.LOC = ‘B’ AND 

S.START <= T.START AND T.END <= S.END AND

(S.END_TIME – S.START_TIME) < 10

Figure 13: SQL Query for <//A//B[(EndTime-
StartTime)<10]/C>

Path oriented retrieval queries may also have the product

information conditions such as PRODUCT NAME = ’note-
book’. To process such queries, we first perform the selec-
tion of INFO TABLE for product information conditions.
We then join INFO TABLE and TAG TABLE on TYPE.
Figure 14 shows the SQL query corresponding to the path
oriented retrieval query <//A//B/C, PRODUCT NAME =
’notebook’>

SELECT T.TAG_ID

FROM PATH_TABLE P, TAG_TABLE T, INFO_TABLE I

WHERE MOD(P.ELEMENT_ENC, pA*pB*pC) = 0 AND

MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB) 

AND

MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC)

AND P.PATH_ID = T.PATH_ID AND 

I.PRODUCT_NAME = ‘notebook’ AND I.TYPE = T.TYPE 

Figure 14: SQL Query for <//A//B/C,
PRODUCT NAME = ’notebook’>

7.3 Path Oriented Aggregate Query
Since path oriented aggregate queries have aggregate func-

tions, we add an aggregate function in the select clause
of the SQL query. Figure 15 shows the SQL query corre-
sponding to the path oriented aggregate query <COUNT(),
//A//B/C>.

SELECT COUNT(*)

FROM PATH_TABLE P, TAG_TABLE T 

WHERE MOD(P.ELEMENT_ENC, pA*pB*pC) = 0 AND

MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB) 

AND

MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC) 

AND P.PATH_ID = T.PATH_ID

Figure 15: SQL Query for <COUNT(), //A//B/C>

In the case of aggregate functions that need the time at-
tributes as arguments, we join TAG TABLE and TIME
TABLE to get the time attributes since PATH TABLE does
not have the time information. Figure 16 shows the SQL
query corresponding to the path oriented aggregate query

<AVG(B.StartTime),//A//B/C>.

SELECT AVG(S.START_TIME)

FROM PATH_TABLE P, TAG_TABLE T , TIME_TABLE S

WHERE MOD(P.ELEMENT_ENC, pA*pB*pC) = 0 AND

MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC,pB) 

AND

MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC)

AND P.PATH_ID = T.PATH_ID AND S.LOC = ‘B’ AND 

S.START <= T.START AND T.END <= S.END

Figure 16: SQL Query for <AVG(B.StartTime),
//A//B/C>



Consider the query <AVG(C.EndTime-A.StartTime),
//A//B/C>. The query has the aggregate function that has
two time attributes as the argument. In this case, we join
one TAG TABLE and two TIME TABLEs. Figure 17 shows
the SQL query corresponding to the path oriented aggregate
query <AVG(C.EndTime-A.StartTime), //A//B/C>.

SELECT AVG(S2.END_TIME-S1.START_TIME)

FROM PATH_TABLE P, TAG_TABLE T, 

TIME_TABLE S1, TIME_TABLE S2

WHERE MOD(P.ELEMENT_ENC, pA*pB*pC) = 0 AND

MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB) 

AND

MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC)

AND P.PATH_ID = T.PATH_ID AND S1.LOC = ‘A’ AND 

S1.START <= T.START AND T.END <= S1.END AND 

S2.LOC = ‘C’ AND 

S2.START <= T.START AND T.END <= S2.END

Figure 17: SQL Query for <AVG(C.EndTime -
A.StartTime), //A//B/C>

8. EXPERIMENTS
In order to validate our approach, we conduct experimen-

tal evaluations for various queries.

8.1 Experimental Environment
We experiment on a Pentium 3GHz with 1GB main mem-

ory using Java. Since there is no a well known RFID data
set, we generate synthetic data and formulate 12 queries
(1 tracking query, 4 path oriented retrieval queries, 7 path
oriented aggregate queries). The query performance is mea-
sured by processing queries 3 times and averaging the ex-
ecution time. As the comparison system, we use RFID-
Cuboid [10]. For fairness, we implement RFID-Cuboid on
an RDBMS to support tracking queries and path oriented
queries.

8.1.1 Data Set
Since we use stay records instead of raw RFID data, we

generate stay records. As products move together in groups,
in many RFID applications, we generate stay records with
the grouping factor like [10]. We consider two kinds of data
in data generation, GData and IData. In GData, many
products move together in large groups and there are many
stay records with the same location and time. In contrast
to GData, in IData, products move together in small groups
or individually. By generating GData and IData, we ana-
lyze how the query performance is affected by the grouping
factor.

To generate GData and IData, we set parameters as shown
in Figure 18. The grouping factor (g1, g2, · · · , gk) means
that, in the i-th stage, the number of products in a group is
gi. Since gi in GData is much larger than gi in IData, prod-
ucts in GData move together in much larger groups than
those in IData. We set the minimum path length to 4 and
the maximum path length to 8 in both GData and IData.
To generate the paths from the minimum path length to the
maximum path length, we use the parameter, the rate of

GData IData

Grouping factor (1000, 500, 200, 
100, 30, 10, 3, 1)

(50, 20, 10, 
5, 3, 1, 1, 1)

Minimum path length 4 4

Maximum path length 8 8

The rate of moving to the 
location in the next stage

0.5 0.5

Figure 18: Parameters for GData and IData

moving to the location in the next stage. The generation for
the next location is stopped or the next location is gener-
ated according to the rate. We set it to 0.5 in both GData
and IData. We set the time information in stay records
randomly with the maximum value. We generate 2 × 105,
4×105, 6×105, 8×105, and 106 stay records for both GData
and IData with the parameters in Figure 18.

8.1.2 Query Set
We formulate 12 queries to test various features. Query

1 is a tracking query, Query 2-5 are path oriented retrieval
queries, and Query 6-12 are path oriented aggregate queries.
The queries are is shown in Figure 19. Note that the location
names in Figure 19 are not the real location names of the
synthetic data since the real names are long.

Query 

Number

Query

Query 1 TagID = 1

Query 2 <//F>

Query 3 </A/B/C/D>

Query 4 <//B//D//E>

Query 5 <//B//D[StartTime<200]//E>

Query 6 <COUNT(), //F>

Query 7 <COUNT(), //B//D//E>

Query 8 <COUNT(), //B//D[StartTime<200]//E>

Query 9 <AVG(B.EndTime - B.StartTime), //B//D//E>

Query 10 <AVG(F.StartTime), //F>

Query 11 <MIN(B.EndTime - B.StartTime), //B//D//E>

Query 12 <MIN(F.StartTime), //F>

Figure 19: Query Set

Query 1 tests the performance of the tracking query. Query
2, 6, 10, and 12 evaluate the performance for the simple path
condition while other queries evaluate the performance for
the complex path condition. Especially, Query 5 and 8 have
the time condition.

8.2 Experimental Results
Figure 20 shows the query performance for 12 queries.

Figure 20-(a) is the performance in GData with 106 tuples
and Figure 20-(b) the performance in IData with 106 tuples.



We denote our approach Path and RFID-Cuboid Cuboid in
figures of this section. Since the performance gap between
our approach and RFID-Cuboid is wide, we use the loga-
rithmic scale for the execution time in Figure 20. If the ex-
ecution time of our approach is 2 times better than that of
RFID-Cuboid in the graph with the logarithmic scale (base
10), the execution time of our approach is 100 times better
than that of RFID-Cuboid.

In GData and IData, our approach is better than RFID-
Cuboid for most queries in terms of the execution time (ex-
cept Query 6, 10 and 12) Also, we can observe that the
performance gap between our approach and RFID-Cuboid
in IData is larger than that in GData. Since the shapes of
graphs for the execution time for different sizes are similar,
we show the execution time for only GData with 106 and
IData with 106 in Figure 20.
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Figure 20: Execution Time for 12 Queries

Figure 21, 22, 23, 24, 25, and 26 show the query per-
formance according to the number of stay records. Figure
21-(a) shows the performance for a tracking query. For the
tracking query, our approach is faster than RFID-Cuboid in
both GData and IData. Also, we can observe that our ap-
proach is much faster than RFID-Cuboid in IData. While
our approach finds only Element List Encoding Number and
Order Encoding Number for the given tag identifier, RFID-
Cuboid scans STAY TABLE (the table for stay records).
Therefore, in IData, RFID-Cuboid has much worse perfor-
mance than our approach compared to GData since the
number of tuples of STAY TABLE in IData is more than
that in GData.

The query performance of Query 2, 3, and 4 is shown in

(a) Query 1 (b) Query 2
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Figure 21: Execution Time for Query 1 and 2

(a) Query 3 (b) Query 4
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Figure 22: Execution Time for Query 3 and 4

Figure 21-(b), 22-(a), 22-(b). These queries are path ori-
ented retrieval queries. To process path oriented retrieval
queries, RFID-Cuboid joins STAY TABLE and MAP TABLE.
MAP TABLE is the table which contains mapping from
GID to TAG ID in RFID-Cuboid. Since RFID-Cuboid uses
the prefix encoding scheme, it needs the string comparisons
in processing the join between STAY TABLE and MAP
TABLE. Therefore, for path oriented retrieval queries, our
approach has much better performance than RFID-Cuboid.

The performance of Query 5 is shown in Figure 23-(a).
Although RFID-Cuboid in GData shows much better per-
formance than that in IData for the cases of Query 2, 3,
and 4, the performance gap between GData and IData in
RFID-Cuboid does not have big difference in Figure 23-(a).
Query 5 has the time condition (StartTime<200). There-
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Figure 23: Execution Time for Query 5 and 6
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Figure 24: Execution Time for Query 7 and 8

(a) Query 9 (b) Query 10
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Figure 25: Execution Time for Query 9 and 10

fore, in IData, many tuples of STAY TABLE are removed
by the condition and tuples to join are reduced significantly.
Therefore, the performance gap between IData and GData
for RFID-Cuboid is small in Query 5.

In Query 6, 10 and 12 (Figure 23-(b), Figure 25-(b) and
Figure 26-(b)), RFID-Cuboid is better than our approach.
The path condition in Query 6, 10, and 12 has only one
location. Since RFID-Cuboid focuses on groups in which
products move together, it is efficient in the case of get-
ting information on one location. However, in supply chain
management, it is important to analyze the object transi-
tion. For queries related to the object transition (Query 3,
4, 5, 7, 8, 9, and 11), our approach is superior to RFID-
Cuboid. However, for Query 2, our approach has better
performance than RFID-Cuboid although Query 2 is to get

(a) Query 11 (b) Query 12
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Figure 26: Execution Time for Query 11 and 12

information on one location. This is because RFID-Cuboid
uses the string comparison to get tags.

Consider the query performance of Query 6, 10, and 12
(Figure 23-(b), Figure 25-(b) and Figure 26-(b)) versus that
of Query 7, 9 and 11 (Figure 24-(a), Figure 25-(a) and Fig-
ure 26-(a)). The path condition in Query 6, 10 and 12
has only one location while the path condition in Query
7, 9 and 11 has multiple locations. Since our approach
uses Element List Encoding Number and Order Encoding
Number, it can easily find paths although the path condi-
tion has many ancestor-descendant relationships. Therefore,
in Query 7, 9 and 11, our approach is better than RFID-
Cuboid.

Since Query 8 has the time information, our approach
joins TAG TABLE and TIME TABLE. Therefore, our ap-
proach has a little worse performance than RFID-Cuboid
for GData as shown in Figure 24-(b).

Consequently, our approach is superior to RFID-Cuboid
in most cases. The query performance of our approach is
on the average 680 times and maximum 14278 times bet-
ter than that of RFID-Cuboid. To compute the average
ratio, we compute the ratios between the execution time of
our approach (t path) and that of RFID-Cuboid (t cuboid)
for all combinations of queries and data sets. We compute
the ratio as t cuboid/t path if our approach is faster, while
−t path/t cuboid otherwise. Then we take the average of
all the ratios. In addition, our approach is less sensitive
than RFID-Cuboid for the grouping factor. Therefore, our
approach can be used in a wide range of applications. For
the path oriented aggregate query whose path condition has
only one location, our approach may be worse than RFID-
Cuboid. However, since it is important to analyze the object
transition in supply chain management, our approach will be
more useful.

9. CONCLUSION
We expect that RFID technology will revolutionize sup-

ply chain management. In supply chain management, a
large amount of RFID data is generated. However, since
RFID data has the flow information different from the tra-
ditional data, it is difficult to store data and process queries.
Therefore, we propose an efficient storage scheme and query
processing for supply chain management. Also, we pro-
pose query templates to analyze the object transition in
supply chain management. Since we can represent paths
compactly and efficiently using our proposed path encoding
scheme, queries for supply chain management are processed
efficiently in our storage scheme. Finally, we show the su-
periority of our approach. In most queries, our approach is
better than a recent approach. Our approach is not sensitive
for the grouping factor.
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