
1

SPIRE: Efficient Data Inference and Compression
over RFID Streams

Yanming Nie‡, Richard Cocci†, Zhao Cao†, Yanlei Diao†, and Prashant Shenoy†
†Department of Computer Science, University of Massachusetts Amherst, U.S.A.

‡School of Computer Science, Northwestern Polytechnical University, China

Abstract—Despite its promise, RFID technology presents nu-
merous challenges, including incomplete data, lack of location
and containment information, and very high volumes. In this
work, we present a novel data inference and compression
substrate over RFID streams to address these challenges. Our
substrate employs a time-varying graph model to efficiently
capture possible object locations and inter-object relationships
such as containment from raw RFID streams. It then employs
a probabilistic algorithm to estimate the most likely location
and containment for each object. By performing such online
inference, it enables online compression that recognizes and
removes redundant information from the output stream of this
substrate. We have implemented a prototype of our inference
and compression substrate and evaluated it using both real traces
from a laboratory warehouse setup and synthetic traces emulat-
ing enterprise supply chains. Results of a detailed performance
study show that our data inference techniques provide high
accuracy while retaining efficiency over RFID data streams, and
our compression algorithm yields significant reduction in output
data volume.

Index Terms—RFID, data streams, data cleaning, compression,
supply-chain management

I. INTRODUCTION

RFID is a promising electronic identification technology
that enables a real-time information infrastructure to

provide timely, high-value content to monitoring and tracking
applications. An RFID-enabled information infrastructure is
likely to revolutionize areas such as supply chain management,
healthcare, pharmaceuticals [1], postal services and surveil-
lance in the coming decade.

Data stream management is central to the realization of such
a monitoring and tracking infrastructure. While data stream
management has been extensively studied for environments
such as sensor networks [2], [3], [4] existing research has
mostly focused on sensor data that captures continuous en-
vironmental phenomena. RFID data—a triplet <tag id, reader
id, timestamp> in its most basic form—raises new challenges
since it may be insufficient, incomplete, and voluminous.

Insufficient information: Since RFID is inherently an iden-
tification technology designed to identify individual objects, a
stream of RFID readings does not capture inter-object rela-
tionships such as co-location and containment. For instance,
an RFID stream does not directly reveal whether flammable
objects are secured in a fire-proof container, or foods with and

A preliminary version of this work appeared as a 3-page poster paper at
ICDE 2008

without peanuts are not packaged in the same container, even
though all items and containers are affixed with RFID tags.

Incomplete data: Despite technological advances, RFID
readings are inherently noisy with observed read rates sig-
nificantly below 100% in actual deployments [5], [6]. This
is largely due to the intrinsic sensitivity of radio frequencies
(RFs) to environmental factors such as occluding metal objects
[7] and contention among tags [8]. Missed readings result in
lack of information about an object’s location, significantly
complicating the tasks of determining object location and
containment and detecting anomalies such as missing objects.

High volume streams: RFID readers are often configured
to read frequently when they are deployed in wired, powered
environments. Large deployments of such readers can create
excessively large volumes of data, e.g., over terabytes of
data in a single day [9]. The resulting data, however, may
encode significant amounts of redundant information such as
an unchanged object location. Hence, it is crucial that data be
filtered and compressed close to the hardware while preserving
all useful information.

Recent research on RFID data cleaning [10], [6], [11]
has employed smoothing techniques to clean individual tag
streams and estimate tag counts in a given location in the
presence of missed readings. These techniques, however, do
not capture inter-object relationships such as containment or
identify anomalies such as missing objects. Recent research
on probabilistic query processing [12], [13] has not focused
on the derivation of information mentioned above, such as
containment or missing objects, but its query processing
can be enriched once such information is made available as
input. Furthermore, none of the above work has addressed
the data compression problem. Compression techniques for
RFID warehouses use expensive disk-based operations such
as sorting and summarization [14] or employ application-
specific logic [15]. Hence, they are unsuitable for fast online
compression of RFID streams close to the hardware.

In this paper, we present SPIRE, a system that addresses
the above three challenges by building an inference and
compression substrate over RFID data streams. This substrate
enables accurate inference of observed data, even though
the raw data is incomplete. Further, it infers inter-object
relationships such as co-location and containment as well as
anomalies such as missing objects. Finally, by performing
online inference, it enables online compression that discards
redundant data such as an unchanged object location or an
unchanged containment between objects. Online compression

2

significantly reduces data volume, thereby expediting query
processing and reducing transfer costs in distributed systems.

The SPIRE system employs three key techniques, which are
also the main contributions of this paper:

• We propose a time-varying graph model that captures
possible object locations and containment relationships
with its efficient construction from raw RFID streams.

• We further develop an online probabilistic algorithm
that estimates the most-likely locations of objects and
containment relationships among objects (which subsume
co-location relationships) from the information captured
in the graph model.

• We finally devise an online compression algorithm that
transforms an input raw RFID stream into a compressed
yet richer output event stream with both location and
containment information.

We have implemented our inference and compression sub-
strate in a prototype system and evaluated it using both
real traces from a laboratory warehouse setup and synthetic
traces emulating enterprise supply chains. Our results show
that our data inference techniques achieve error rates below
15% for location estimates for a wide range of RFID read
rates, and within 20% for containment estimates when the
read rate reaches 80%. In addition, these techniques can be
performed efficiently on high-volume RFID streams. Further-
more, our compression techniques can encode rich location
and containment information using only 20% or less of the
raw input data size when the read rate reaches 80%. Finally,
we compare our system with SMURF [11], a state of the art
system for RFID data cleaning, that can be used to produce
object location information but not containment information.
For object location updates, our system outperforms SMURF
in both the error rate and the resulting compression ratio.

The rest of the paper is organized as follows. Section II
formulates the problem. Sections III, IV, and V describe the
three key techniques of our system. Section VI presents results
of a detailed performance study. Finally, Section VII presents
related work, and Section VIII concludes the paper.

II. PROBLEM STATEMENT

Before defining the problem, we present the notion of the
physical world. A physical world covers a specific geograph-
ical area comprising a set of objects O, a set of pre-defined,
fixed locations L, and an ordered discrete time domain T . The
set of locations can be either pre-defined logical areas such as
aisle 1 in warehouse A, or (x, y, z) coordinates generated by
a positioning system.

At time instant t, the state of the world includes:
1) the set of objects present in each location, encoded by

the boolean function resides(oi ∈ O, lk ∈ L, t), which
is true iff object oi is present at location lk; and

2) the containment relationship between objects, encoded
by the boolean function contained(oi ∈ O, oj ∈ O,
lk ∈ L, t), which is true iff objects oi and oj are both
in location lk and oi is contained in oj .

In this work, we refer to the functions resides and
contained as the ground truth. The state of the world

changes whenever an object enters the world, exits the world
through a designated channel (e.g., an exit door), or changes
its location or containment relationship with other objects.
The set of locations L also contains a special location called
“unknown”. In particular, an object can be in the unknown
location if it is not present in any pre-defined location (e.g.,
if it is in transit between two locations) or if it exited the
physical world improperly (e.g., was stolen).

RFID readers provide a means to observe the physical
world. The readings produced at time t are collectively called
an observation of the world. In this work, we focus on
readers mounted at fixed locations—a common configuration
in today’s RFID deployments. For such fixed readers, a reading
captures the location of the object, which is the same as the
location of the reader. Such readings, however, are inadequate
for capturing the containment between objects. Furthermore,
the observation of the world may be incomplete since some
objects may not respond to reader queries due to technological
limitations. As a result, both the location and containment of
an unobserved object becomes unclear.

The data inference problem is to construct an approximate
yet accurate estimate of the state of the world based on
the observations thus far. We define an approximation using
functions resides and contained that for given arguments,
return probabilistic values representing the likelihood of the
function being true. Then the data inference problem can be
formulated as: given the time now and an object oi, report

1) the most likely location of the object, denoted by
arg maxk resides(oi, lk, now), and

2) the most likely container of the object, denoted by
arg maxj,k contained(oi, oj , lk, now).

The data compression problem is to transform the input
stream into an output stream with a reduced data volume
but with no loss of information. Such compression requires
the knowledge of what data is redundant and thus can be
safely discarded; in this work, we use inference to obtain such
knowledge. The combination of inference and compression
yields an output stream that (i) augments the input stream
with additional, likely information about objects, and (ii) has
a significantly reduced volume of data.

A running example. A warehouse scenario is depicted in
Fig. 1, where RFID readers are installed above the loading
dock, the conveyor belt, and two shelves. Each arriving pallet
is scanned at the loading lock, together with the cases on the
pallet and items in the cases. An RFID tag is attached to every
pallet, case, and item. In this example, at time t=1, the reader
at the loading dock reports objects 1 to 6, denoted by the black
nodes. These nodes are arranged according to the packaging
levels that the reported tag ids indicate [16]. Object 7 is also
present but was missed by the reader, denoted by a white
node, i.e., a missed reading. Containment between objects,
depicted by the dashed edges, is not reported by the readings
and often uncertain. Examples of ambiguous containment are
the containers of items 4, 5, 6, which can be either case 2 or
case 3 based on the readings received.

After time t=1, the pallet stays at the locking dock while the
cases transition to other places for scanning. At time t=2, case
2 is scanned individually on the conveyor belt. It is possible

3

Level 1: Pallet

A: loading dockLocations B: belt

Time t = 1 t = 2

Level 2: Case

Level 3: Item

1

3

4 5 6 7

2

4 5

2

t = 4

B: belt S1: Shelf 1

3

6 7

8

9 10

S2: Shelf 2

t = 3

B: belt S1: Shelf 1

3

6 7

8

9 10

S2: Shelf 2

8

9

2

4 5

3

Fig. 1. Example readings of RFID-tagged objects in a warehouse. Nodes in black, gray, and white represent objects read in ithe true location, objects read by
a nearby reader, and unobserved objects, respectively. A dashed edge denotes a containment relationship between objects, which cannot be directly observed.

 Inference &
 Compression

Complex Event
ProcessorEvent DB

Data Capture: graph construction

Inference: location & containment

Event Output: compression

Network

RFID Devices

Fig. 2. Architecture of the SPIRE system.

to confirm the containment between the case and its item(s)
if we know for sure that the belt reader scans cases one at a
time. At t=3, case 3 is scanned on the belt with its contained
items. A new case 8 with items 9 and 10 are read at shelf
1, which is their true location. In addition, case 8 and item 9
are also read at shelf 2 by a nearby reader, which are called
duplicate readings.

At t=4, item 6 is read at the belt again (it fell off its case at
t=3 and stayed here). Case 2 was placed onto shelf 1. However,
case 2 and item 5 are missed by the reader at shelf 1. Case 3
was placed onto shelf 2 instead. It then receives both a reading
from shelf 2 and a duplicate one from shelf 1. Finally, case 8
is read at shelf 1 again but the reading of item 9 is missed.

System architecture. The SPIRE system employs a data
inference and compression substrate to address the above
issues. The substrate, epicted in Fig. 2, consists of (i) a data

capture module that implements a stream-driven construction
of a time-varying graph model to encode possible object
locations and containments, (ii) an inference module that
employs a probabilistic algorithm to estimate the most likely
location and containment for an object, and (iii) a compression

module that outputs stream data in an compressed format. The
next three sections describe these techniques in detail.

III. DATA CAPTURE

This section describes our data capture technique to con-
struct a time-varying graph model from the raw RFID stream.

A. A Time-Varying Colored Graph Model

Our graph model G = (V,E) encodes the current view
of the objects in the physical world, including their reported
locations and (unreported) possible containment relationships.
In addition, the model incorporates statistical history about

co-occurrences between objects. Example graphs for the ob-
servations in Fig. 1 are shown in Fig. 3.

The node set V denotes all RFID-tagged objects in a
physical world. In a supply-chain environment, the RFID
standard [16] requires that an object have a packaging level
of an item, case, or a pallet, and this information be encoded
in the object’s tag ID. Given such information, our graph is
arranged into layers, with one layer for each packaging level.
In addition, each node has a set of colors that denote its
observed locations, with one color for each observed location.
The node colors are updated using the stream of readings
in each epoch (each color assigned to a node represents the
location where it is observed by an RFID reader). If an
object is not read by any reader in a given epoch, its node
becomes uncolored. However, every node retains memory of
its recent colors in the last k observations (k=1 as depicted in
Fig. 3, but k=3 actually used in this work), denoted by a list
{(recent color, seen at)}. If the node obtained the same
color several times in the last k observations, the most recent
observation is used to set the seen at attribute.

The directed edge set E encodes possible containment re-
lationships between objects. A directed edge oi → oj denotes
that oi contains object oj (e.g., a case i contains item j). We
allow multiple outgoing and incoming edges to and from each
node, indicating an object such as a case may contain multiple
items, and conversely, an item may be contained in multiple
possible cases (our inference method will subsequently choose
only one of these possibilities). More generally, edges can
exist between different combinations of colored and uncolored
nodes, except that an edge cannot connect two colored nodes
for which all available colors indicate a distance between the
two objects beyond the read range of an RFID reader (e.g.,
over 40 feet)—in such cases, there cannot exist a containment
relationship between the two objects. As such, our colored
graph can capture a wide variety of containment relationships.

To enable probabilistic analysis, our graph also encodes
rich statistics. Each edge maintains a bit-vector recent
co-locations to record recent positive and negative evi-
dence for the co-location of the two objects. A bit is set
every time the two nodes connected by an edge are assigned
the same color, i.e., the two objects are both observed in the
same location. Furthermore, each node records the confirmed
parent, i.e., the most recent confirmed container as a result
of a highly likely estimate, the time of confirmation, and the
number of conflicting observations obtained thus far. Among
all incoming edges to a node, at most one edge can be chosen
as the confirmed edge (which we detail in Section 4).

4

(c) t = 3
1

2 3

4 5 6 7

(A,1)

(A,1)

(B, 3)

(A,1) (B,3)

(B,2)

(B,2)

1

2 3

4 5 6

Level 1

A: loading dockLocations

Time

B: belt

(a) t = 1 (b) t = 2

Level 2

Level 3

1

2 3

4 5 6

(A,1) (A,1)

(A,1)

(A,1)(A,1)(B,2)

(B,2)(A,1)(A,1)

(A,1)(A,1)(A,1)
B: belt

10

8

S1: Shelf 1

(S1,3)

(S1,3)(S1,3)

8

9 9

(S2,3)

(S2,3)

S2: Shelf 2
(S1,4)

(d) t = 4

2 3

4 5 6 7 9 10

8 (S1,4)(S1,4)

(S1,S2,3)(S2,4)(S1,4)(S1,4) (B,4)

(B,2)

1 (A,1)

B: belt S1: Shelf 1 S2: Shelf 2

3 (S2,4)

Fig. 3. Evolution of the time-varying colored graph model as RFID readings arrive in each epoch.

(S1,4)

2 3

4 5 6 7 9 10

8 (S1,4)(S1,4)

(S1,S2,3)(S2,4)(S1,4)(S1,4) (B,4)

(B,2)

1 (A,1)

B: belt S1: Shelf 1 S2: Shelf 2

3 (S2,4)

(a) At t=4, step 1
(create and color nodes)

(S1,4)

2 3

4 5 6 7 9 10

8 (S1,4)(S1,4)

(S1,S2,3)(S2,4)(S1,4)(S1,4) (B,4)

(B,2)

1 (A,1)

B: belt S1: Shelf 1 S2: Shelf 2

3 (S2,4)

(b) At t=4, step 2
(add edges)

Fig. 4. Intermediate steps of the graph update procedure.

B. Stream-Driven Graph Construction

We assume that time is divided into epochs and the graph is
updated using stream data from each epoch. Our construction
algorithm takes the graph G from the previous epoch and a
set of readings Rk from each reader k in the current epoch,
and produces a new graph G∗. The graph update procedure
proceeds in four steps (the detailed pseudo-code is provided
in our technical report [17]).

Step 1. Create and color nodes: If a new object is observed
for the first time, a new node is created in the graph. For
each observed object, the color of the location in which it was
observed is added to the color set of the corresponding node.
Fig. 4(a) shows the result of this step when it is applied at
time t=4 to the previous graph (Fig. 3(c)), using the readings
from the conveyor belt, shelf 1, and shelf 2.

Step 2. Add edges: Next, if two nodes in adjacent layers
share a common color (e.g., nodes 3 and 4 share the color
for Shelf 1) an edge is added between them if it does not
already exist. Doing so enumerates all possible containment
relationships (e.g., an item observed at shelf 1 can be contained
in any of the cases that are also observed at shelf 1). This
step may require each node in a layer to be compared with
all the nodes in the adjacent layers. An optimization for this
step is to restrict such comparisons with adjacent layers only
to the nodes that have just been assigned a new color. This
is because if neither node of an edge is assigned a new
color, then both objects are either in original locations or
unobserved, offering no information for establishing a new
containment relationship. Fig. 4(b) illustrates the result of this
step of adding edges to the graph in Fig. 4(a). The bold
circles represent the nodes that have changed their colors at
t=4. Hence, new edges are created only for these nodes, e.g.,
between nodes 3 and 4, 3 and 10, 8 and 4, and 8 and 5.

Step 3. Remove edges: While the previous step adds new
edges to the graph, in this step we remove outdated edges
from the graph. An edge is removed if both nodes of the

edge are colored and every possible pair of colors of these
nodes indicates a large distance between the locations of the
corresponding objects (i.e., beyond the read range of a single
reader). In our example, assume that the readers for the belt
and shelf 1 are far away from each other. Then the edge
between nodes 3 and 6 in Fig. 4(b) is removed because the
colors of these nodes indicate the belt and shelf 1, respectively.
The resulting graph is in Fig. 3(d). Additional edges can be
pruned if we can confirm the parent edge (container) of a node,
hence eliminating other possibilities. We discuss the inference
method that enables such edge pruning in the next section.

Step 4. Update edge statistics: This step updates statistics of
the edges that have at least one node colored in step 1. Given
an edge e, if the two linked nodes share a common color,
recent co-locations of e is updated by setting the most
recent bit to True. If one of the linked nodes is uncolored,
the most recent bit is set to False. In this case, we also
check if e was set before as the confirmed parent edge of the
child node, and if so count the current epoch as a conflicting
observation of the confirmation. These statistics play a key
role in containment inference as we shall show shortly.

Complexity analysis. We finally analyze the complexity of
the graph update procedure. The total cost of updating a graph
G(V,E) using reading sets R1, . . ., RK is the sum of the
individual update costs for Rk, 1 ≤ k ≤ K. For each reading
set Rk, only the colored nodes and their incident edges are
processed. The cost analysis is as follows.

Step 1: Given the reading set Rk, the cost of coloring
nodes is simply |Rk|. Steps 2, 3, and 4: After processing
all reading sets, R1, · · · , RK , the next three steps share the
process of examining every edge linked to a colored node.
Two observations hold: First, consider those edges for which
the two linked nodes share a common color. Given a reading
set Rk, the maximum number of edges that may have both
nodes colored by Rk is the size of the largest bipartite graph
covered by Rk, that is, (|Rk|/2)2. Other edges either have
different colors assigned to the two linked nodes or have
one node colored but the other uncolored. These edges must
have already existed in the input graph G. Such edges can be
bounded by the projection of the input graph onto the subset
of edges that are linked to at least one node colored in the
current epoch, denoted by πR1,...,RK (G). Given that each edge
is visited at most twice, one from each linked colored node, the
cost of steps 2 to 4 is at most

�
k |Rk|2/2+2|πR1,...,RK (G)|.

So, the total cost of graph update for all readers in an epoch
is O(

�
k |Rk|2 + |πR1,...,RK (G)|). This upper bound includes

a cost no more than the input graph size and some local

5

costs quadratic in the size of the subgraph colored by each
reader. It is important to note that the local quadratic costs are
rare because there are usually more objects than containers,
hence in practice, we see close to a linear cost in Rk. These
costs are also bounded because the anti-collision protocol of
an RFID reader limits the number of tags that it can read in
an epoch, e.g., up to 400 using latest RFID readers such as
ThingMagic Mercury 6e. The actual numbers of tags placed
in real deployments are significantly less in order to ensure
stable performance.

IV. DATA INFERENCE

The graph constructed from the data capture step can result
in nodes that are uncolored or multicolored and possess
multiple parent nodes. The data inference step estimates the
most likely location of an object if it is unreported (uncolored)
or is reported in multiple locations (multicolored). It also
estimates the most likely container (parent) of each object.
We present probabilistic techniques that include edge inference
to address ambiguous containment, node inference to address
uncertain locations, and an iterative procedure that applies both
to the entire graph in an alternating fashion.

A. Edge inference

Edge inference is applied to all incoming edges of a node v

(i.e., edges from the parent nodes of v) regardless of whether
the node is colored. It assigns a probability value pei to each
edge; the edge with the highest probability value is then chosen
as the most likely container of this object.

Edge Confirmation Algorithm. Our first technique aims
to find a sequence of readings, called the critical region, that
distinguish the true container from others. An example would
be when a reader at the conveyor belt reads a case with its
contained items, with no other case being observed at the same
time. Moreover, the belt reader is far away from other readers
so the case and its items cannot be observed elsewhere. If this
trend continues for a few epochs, one shall be able to confirm
the (only) case at the belt to be the container of the observed
tags. This period may be short in general as the case can be
soon put on a shelf together with many other cases.

We next present an information-theoretic approach to detect
short critical regions when the received readings distinguish
the true container from others. Given a node v, our detection
algorithm works as follows:

Step 1. Assign weights. The first step computes a weight
wei for each incoming edge as follows:

w̄ei =
�W

i=0 recent co-locations[i]
�W

i=0 1
, (1)

where recent co-locations[i] indexes the ith bit of co-
location bit vector and W is the size of the window used in
critical region detection. We consider a small window (W=4
used in our work) since larger W values could add noise and
hence make these edge weights less useful.

Step 2. Compute probabilities. This step computes a prob-
ability pei for each edge by normalizing the weight.

p̄ei =
w̄ei�m

j=0 w̄ej

(2)

Step 3. Compute entropy. This step computes the normal-
ized entropy of the probability distribution of all incoming
edges of a node:

h =
m�

j=1

p̄ej log p̄ej /

m�

j=1

1
m

log
1
m

(3)

As is known in information theory, the entropy is a measure
of uncertainty associated with a random variable—the true
parent of a node in this work. A low value of the entropy indi-
cates less uncertainty about the true parent. Hence, whenever
the entropy is significantly low, we can consider the current
window as a critical region and return the edge with the highest
probability as the confirmed parent. However, it is also known
that a random variable with 10 equally possible values has
a higher degree of uncertainty than a random variable with
2 equally possible values; that is, the entropy is sensitive to
the number of possible values. To mitigate this effect, we
normalize the entropy of a node with m parent edges with
the maximum entropy of a m-valued random variable, i.e.,
when each value has probability 1/m. Then we compare the
normalized entropy, h, with a threshold, λ; if h < λ, the edge
with the highest probability is chosen to be the confirmed
parent. As our evaluation in Section VI-B shows, using the
normalized entropy makes it easy to choose a reasonably low
threshold that offers stable performance.

Step 4. Edge Pruning. Once an edge is confirmed to be the
parent of the node v, all other incoming edges pointing to v

can be dropped. In the example in Fig. 3(b), assume that the
readings from the belt reader constitute a critical region and
the edge from node 2 to node 4 is confirmed to be the parent
of node 4. Then, the edge from node 3 to node 4 can be safely
removed. If we further know (using domain knowledge) that
a case is the top level container on a belt and indeed the belt
reader only observes a case but not a pallet, we can further
drop all parent edges of a confirmed container, e.g., the edge
from node 1 to node 2 in Fig. 3(b).

Edge Inference Algorithm. If the edge confirmation did not
succeed, we perform edge inference for node v to select the
most likely parent edge as the estimated container. Performing
edge inference requires the use of history that includes (i)
the recent history of co-locations, stored in the bit-vector
recent co-locations, and (ii) the last confirmed parent
of v, captured in confirmed parent. Such use of history
makes edge inference less sensitive to missed readings at
present time. Edge inference at a node consists of two steps,
as illustrated in Fig. 5(a).

Step 1. Assign weights: The first step computes a weight
wei for each incoming edge as follows:

wei =
�S

i=0
recent co-locations[i]

iα

�S
i=0

1
iα

, (4)

where S is the full size of the co-location bit vector. This entire
co-location history is weighted using the parameter α and
them normalized. α essentially implements a Zipf distribution,

6

(a) Edge Inference

2

4

8
e1 e2

w1
Z

β

1-β: belief from
past confirmation

β: belief from
recent history

w2β
Z

e1: pe1

e1: weight w1

e2: weight w2

2

4 5
(S1, 4)(S1, 4)

(B, 2)

(now - seen_at+1)ϴ
(1-ϒ)

1-ϒ: belief gained from
the node itself

ϒ: belief gained via
containment

pe1ϒ
1

(now - seen_at+1)ϴ
(1-ϒ) 1-()

e1 e4

pe4ϒ

Color "Unknown": p-
(missing from B)

Color "B": pb
(still at B)

Color "S1": ps1
(moved to S1)

6
(B, 4)

e5

pe5ϒ∑pei

(b) Node Inference

Z
1-β

∑pei
∑pei

e2: pe2

Step 1

Step 2

Confirmed
in the past

Fig. 5. Examples of edge inference and node inference.

where α > 0 assigns a higher weight to recent history, while
α = 0 weighs all prior co-location information equally.

Step 2. Compute probabilities: The next step builds a
probability distribution across all incoming edges of node v.
It computes a probability pei for each edge by balancing the
relative weight on this edge against the last confirmation of
this edge as the parent of v. A parameter β is used to weigh
these two factors. The probability pei of the edge ei is:

pei =
(1− β)m(ei) + βwei

Z
(5)

The memory function m(ei) takes the value ‘1’ if ei is the
last confirmed edge and ‘0’ otherwise. Since at most one
parent edge of a node can be a confirmed edge, such an edge
gains an extra weight and is favored over other possibilities
until other edges gain sufficient history to outweigh it. Z is a
normalization factor for yielding the final distribution, which
is the sum of the probabilities of all incoming edges of node
v. Fig. 5(a) shows a distribution across two parent edges, e1

and e2, of node 4, with e1 assigned the additional weight 1−β

due to its past confirmation.
Edge inference involves three parameters: (1) S, the size of

the co-location history, (2) α, the zipf parameter for weighting
the history, and (3) β, the partition of beliefs between the
recent history and past confirmation. Section VI quantifies the
sensitivity of edge inference to these parameters. In particular,
we will show that the choices for S and α are quite constant
but that for β can be variable. Furthermore, the value of β can
be dynamically determined using an adaptive method that sets
β to be the ratio of the instances that only one of the object
and its confirmed container is observed against the instances
that any of them is observed. This method is shown to perform
well in Section VI.

B. Node inference

Node inference is applied to all the nodes in the colored
graph. If a node is multicolored, node inference chooses the
most likely color as the estimated location of the correspond-
ing object. If a node is uncolored instead, node inference
attempts to infer the most likely location of the object or
confirm its absence from any known location. A key challenge
in node inference arises from a three-way tradeoff among
continued stay, movement to a new location, and absence from

any known location. These situations are depicted in Fig. 5(b)
for node 2 at time t=4. This object was last seen in location B

at time t=2 and has a few possibilities for its current location: it
is still in location B but the reading in this location was missed
(continued stay); it moved to location S1 with its contained
objects and its reading was missed in S1 (movement to a new
location); it disappeared from B and its current location is
unclear (absence from any known location).

Node Inference Algorithm. To account for all these pos-
sibilities, the node inference builds a probabilistic distribution
over all possible colors of a node v, including (1) the recent
colors of the node, (2) the colors of its neighboring nodes
that can be propagated through the edges—edges are consid-
ered bidirectional in node inference, and (3) a special color
“unknown”. Among all, the color with the highest probability
represents the most likely estimate of this object’s location.

Formally, the probability of the node v having color ci is:

pci(v) = (1− γ)
δ�(v, ci)

(now − seen at + 1)θ
+ γ

�

ei→ci

pei

Z2
(6)

δ(v, ci) =
�

1, ci is a recent color of v
0, otherwise

, δ
�(v, ci) =

δ(v, ci)�
j δ(v, cj)

Here δ(v, ci) is an indicator function that takes the value
1 if ci is one of the recent colors for the node v, and 0
otherwise; δ�(v, ci) is the value normalized across all colors.
The parameter θ controls the rate of fading of a recent color.

We further consider the influence of the colors of the
neighboring nodes, hence taking advantage of the containment
relationship. If a node v has acquired multiple colors, we
consider these colors observed at the neighboring nodes and
include them in the node inference at v. If the node is not
colored in the current epoch, we take into account both the
observed and inferred colors at the neighboring nodes. In the
above formula, ei → ci means that the edge ei propagates
the color ci to v, and Z2 is the normalization factor across all
edges of v that propagate colors to v. Of particular interest is
the parameter γ that weighs the colors that originate from the
node against the colors that propagate through the edges.

Finally, the probability of the special color “unknown” is:

punknown(v) = (1− γ)(1−
�

j∈[1,m]

δ�(v, cj)
(now − seen at + 1)θ

)

(7)

7

(S1,4)

(b) d = 0, l = 2 (case level)

2

4 5 6 7 9 10

8 (S1,4)

(S1,S2,3)(S2,4)(S1,4)(S1,4) (B,4)

(B,2)

1 (A,1)

B: belt S1: Shelf 1 S2: Shelf 2

3 (S1,S2,4)

(S1,4)

(a) d = 0, l = 3 (item level)

2 3

4 5 6 7 9 10

8 (S1,4)(S1,4)

(S1,S2,3)(S2,4)(S1,4)(S1,4) (B,4)

(B,2)

1 (A,1)

B: belt S1: Shelf 1 S2: Shelf 2

3 (S2,4)

(S1,4)

(c) d = 1, l = 3 (item level)

2

4 5 6 7 9 10

8 (S1,4)

(S1,S2,3)(S2,4)(S1,4)(S1,4) (B,4)

(B,2)

1 (A,1)

B: belt S1: Shelf 1 S2: Shelf 2

3 (S1,S2,4)

(S1,4)

(d) d = ∞, l = 1 (pallet level)

2

4 5 6 7 9 10

8 (S1,4)

(S1,S2,3)(S2,4)(S1,4)(S1,4) (B,4)

(B,2)

1 (A,1)

B: belt S1: Shelf 1 S2: Shelf 2

3 (S1,S2,4)

Fig. 6. Illustration of iterative inference across the graph in increasing distance from the colored nodes.

where m denotes the number of parent edges of v. As can be
seen, a colored node always has the “unknown” probability 0
because now equals seen_at and the sum of δ�(v, cj) is 1.

It is evident that the quantities computed for all colors using
Eq. 6 and Eq. 7 sum up to 1, hence forming a probability dis-
tribution. Fig. 5(b) shows the resulting probability distribution
over three colors, B, S1, and “unknown”.

In summary, node inference is influenced by two param-
eters: (1) γ weighs the node colors assigned based on the
assumption that the object is independent of other objects,
against the colors that are propagated from edges based on
the containment relationships; and (2) for the former set of
colors, θ, the exponent of the function (now−seen at+1)−θ,
further adjusts the distribution of the probability mass between
the fading color and the “unknown” color. We quantify the
sensitivity of node inference to γ and θ in Section VI.

C. Iterative Inference

Iterative inference combines node and edge inference to
iterate over the entire graph G(V,E) and derive the most
likely location and containment for each object. Traditional
graph traversal algorithms such as breadth-first and depth-first
search can not be applied here due to the dependency between
edge and node inference. Specifically, node inference involves
the colors of its neighboring nodes and the probabilities of
the edges between those nodes, so it cannot begin until these
dependencies are first resolved.

The key idea of our iterative algorithm is to start inference
from the colored nodes—the nodes with observed locations—
and run it iteratively across the graph, through the edges linked
to the colored nodes, to the uncolored nodes incident to these
edges, to the edges linked to these nodes, and so on. In
this way, inference sweeps through regions of the graph in
increasing distance from the colored nodes; the colors and
edge probabilities determined at nodes in a shorter distance
can contribute to the inference at nodes in a larger distance.

To run iterative inference, we classify nodes based on their
closest distance, d, from a colored node in the graph, and
visit the nodes in increasing value of d. For the nodes of the
same distance d, we visit them in decreasing value of the
packaging level � (e.g., from the items to the cases and then
to the pallets). For each node visited, we first perform edge
inference among all incoming edges of the node, and then
node inference involving all neighboring nodes at distance d-
1 or less, except that if a node is colored, i.e., at d = 0,
we consider all colored neighboring nodes, which are also at
d = 0. Fig. 6 illustrates this process for the graph in Fig. 3(d).
(The pseudocode is left to [17] due to space constraints.)

The algorithm first considers the nodes with the distance
d = 0 (colored) and the packaging level � = 3 (at the
item level), including nodes 4, 5, 6, 7, and 10 as shown in
Fig. 6(a). Edge inference is performed for these nodes to
estimate their most likely parents, where a gray bar marks
the edges considered in the edge inference at a node. Since
each of the nodes has only one color, the node inference is
trivial. Then the algorithm considers the nodes with d = 0 and
� = 2 (at the case level), including nodes 3 and 8 as shown
in Fig. 6(b). Since these nodes do not have incoming edges,
edge inference is simply skipped. During node inference, node
3 is assigned the color for shelf 2. This is because the edge
from node 3 to node 7 was confirmed as a parent edge of
node 7 when they were scanned on the belt, and now the
high probability of this edge transfers from node 7 significant
evidence for the color for shelf 2, outweighing the color for
shelf 1. Next, the algorithm considers the nodes labeled with
d = 1 (uncolored) and � = 3 (at the item level), including only
the node 9 as shown in Fig. 6(c). The node inference chooses
the color for shelf 1 due to the containment relationship with
node 8, which is observed at shelf 1. Finally, the algorithm
considers node 1 with d =∞ (disconnected from any colored
node) and � = 1. It has not been observed since t=1 and
hence gains the highest probability for the unknown location,
i.e., reported missing from the physical world observable by
the existing readers.

Complexity and Optimizations. The complexity of the it-
erative algorithm is bounded by the number of edges examined
in the graph G(V,E). Given that each edge is visited at most
twice, once from each linked node, the complexity is O(|E|).

To improve time and space efficiency, we can further use
a graph pruning routine in the iterative inference procedure.
First, if an object exits the physical world through a proper
channel, e.g., through an exit door of a warehouse, and is
detected by the reader at that place, after inference at the node
representing this object, our system removes the node and any
associated edges from the graph. Second, after edge inference
at a node, we can also use the edge weights to prune edges
that are unlikely to be the true containment. To do so, we use
a threshold (with a default value 0.25) to remove edges whose
weights are below the threshold.

Partial Inference. A practical issue to consider is that RFID
readers may read at different frequencies. In a warehouse, for
instance, belt readers may read once every second while shelf
readers may read once every 10 seconds. If we run inference
for the objects whose closest readers are inactive for a while,
the inferred locations are likely to be the “unknown” location,
which are different from the true locations. To address the

8

issue, our system performs partial inference in the epochs
when not all the readers are active, by (1) restricting inference
to the subset of the graph up to 1 hop away from the
colored nodes, and (2) withholding the inference result of the
“unknown” location until a later time when all readers are
active to run complete inference and output accurate results.

Conflicts Resolution. A final issue with the iterative infer-
ence algorithm is that it may result in different colors inferred
for the two nodes of an edge. This is because the colors of
the two nodes were inferred individually in steps d and d+1.
If the edge between the two nodes is also chosen to represent
their containment relationship, then the inference is yielding
conflicting information: the container and the contained object
are reported in different locations. In the example in Fig 3(d),
node 7 is observed at shelf 2. Suppose that the edge from
node 3 to node 7 is inferred to be node 7’s parent but the
location of node 3 is inferred to be shelf 1 (which is unlikely
but used for the sake of an example). Now we have a conflict
between location and containment inference. In our system,
we preserve the graph model with all the statistics as is, and
resolve conflicts in a post-processing step after inference.

Our guideline on conflict resolution is to give priority to
a containment relationship. This is because the containment
is often based on the confirmed parent that was derived with
high probability before, as described in Section IV-A. Hence,
given a reported containment relationship, if the parent and
child nodes have different inferred colors, we use the parent’s
location to override the child’s location—here we favor the
parent’s location because its inference has taken into account
the locations of all its children, in particular, those that have
confirmed containment relationships with this parent node.

V. STREAM OUTPUT WITH COMPRESSION

The output module of the SPIRE system takes the results
of data inference and transforms them into a compressed
event stream for output. Compared to the raw RFID stream,
the output based on inference results adds location infor-
mation for unobserved objects and containment information
not available in the input stream. The key idea behind our
compression methods is that only those readings that indicate
a state change, such as the change of an object’s location or
containment relationships with others, need to be included in
the output stream. In the absence of a state change, all readings
merely confirm the current state of the world and hence are
redundant; these readings can be safely discarded. Hence, the
compressed output stream contains richer information yet with
a reduced data volume. Below, we describe the data format of
a compressed stream and two compression techniques.

A. Data Format of a Compressed Event Stream

A compressed output stream contains location and contain-
ment events that occur in a time interval, called the event’s
validity interval [18]. The validity interval is represented by
two timestamps, Vs for the start time and Ve for the end time.
Our compressed output format represents these events using
the following five messages:

• StartLocation(object, location, Vs, Ve = ∞)

• EndLocation(object, location, Vs, Ve)
• StartContainment(object, container, Vs, Ve = ∞)
• EndContainment(object, container, Vs, Ve)
• Missing(object, locationMissingFrom, Vs, Ve = Vs)

Start and end location messages always occur in pairs and
encapsulate the time period when an object is inferred to
be present at a particular location. The difference is that the
start location message of an event sets only the Vs timestamp,
leaving Ve with the default value ∞, while the end location
message later sets Ve. Similarly, start and end containment
messages encapsulate the time period of a containment rela-
tionship. Missing messages are singletons always output after
an endLocation event for the object’s previous location.

In this work, we call a compressed stream well-formed if
for a given object, every start location (containment) message
has a matching end location (containment) message and a
missing message appears outside any start-end location pair.
Our system guarantees well-formed output, and at the same
time, allows location and containment update events to be
nested in the most flexible way. For an object, a start-end
containment pair can span multiple start-end location pairs,
representing an unchanged containment as the two objects
move together through various locations. In addition, when
an object is reported missing, the existing containment is not
ended. That is, a start-end containment pair can also enclose
the missing events. On the other hand, it is also possible that
a start-end location pair covers multiple start-end containment
pairs, capturing the containment changes in the same location.

B. Range Compression

Our first compression method, which we refer to as range
compression or level-1 compression, leverages the fact that
if an object is stationary—resident at the same location for
a period of time—its entire stay at this location can be
represented by a single ranged location event. Likewise, if an
object has a stable containment—contained in the same case
or pallet for a period of time—this containment relationship
can also be represented by a single ranged containment event.
The method is implemented by simply comparing an object’s
newly inferred state (either location or containment) to its
previously reported state. For an object that is inferred to be
missing, we output an EndLocation message to complete the
previous location event and then a singleton Missing message.

The output stream of range compression has two properties.
First, location compression and containment compression are
performed separately. Hence, it is possible to split the output
into separate location and containment update streams, and
suppress the output of one stream if not needed. Second, the
result stream of range compression includes complete location
and containment information for each object, and hence is
directly queriable by event systems such as [18], [19].

C. Location Compression using Containment

Our second compression method, referred to as level-2
compression, uses the additional knowledge that under stable
containment, location readings of child objects can be further
suppressed because they are identical to that of the parent.

9

EndContainment(C
2
, P, T1, T3)

 EndLocation(P, L2, T2, T3)

 StartLocation(P, L3, T3, !)

 StartLocation(C
2
, L2, T3, !)

L1

T1

Time
Output of Level 2

Compression

StartContainment(C1, P, T1, !)

StartContainment(C
2
, P, T1, !)

 StartLocation(P, L1, T1, !)

P

C1 C2

T3

T4

 EndLoction(C
2
, L2, T3, T4)

 StartLocation(C
2
, L4, T4, !)

P

C1 C2

P

C1 C2

L2

T2

P

C1 C2

 EndLocation(P, L1, T1, T2)

 StartLocation(P, L2, T2, !)

L3

Current Graph

L4Locations

Fig. 7. An example of level-2 compression for a group of objects.

The benefit of dosing so is to minimize the location output
to only the location of top-level containers. This compression
is lossless because the location of a contained object can be
recovered from its containment relationship and the location
of its top-level container.

An example for level-2 compression is shown in Fig. 7. At
time T1, a pallet P and two cases C1 and C2 are observed at
location L1 (for simplicity of presentation, we omit items in
this example). A StartContainment is output for each of the
contained cases. Given the containment relationships, only a
StartLocation is output for P , the single top-level container.
At time T2, the three objects move as a group to L2. Only the
location of P is updated due to level 2 compression. At time
T3, the three objects are split to two groups. P and C1 move to
location L3 while C2 stays at L2. As a result, the containment
between C2 and P is broken, signaled by the EndContainment
for C2. Then location updates for C2 are soon output since
C2 is no longer contained. In contrast, C1 is still contained in
P so only location updates are sent for P .

This compression method has different properties from the
range compression method. First, the location and containment
output streams are no longer independent. In particular, a
reported containment and the related location updates of the
container need to be correlated to recover the locations of the
contained objects. Second, the output stream is not directly
queriable by event processors due to the lack of location
information of some objects. To facilitate query processing,
our system offers a decompression routine that transforms a
level-2 compressed stream to a level-1 compressed stream.
This routine can be plugged into the front end of a query
processor to decompress the input stream on demand, e.g.,
to retrieve locations of objects in a certain period of time as
requested by the queries.

The routine works as follows. For each time step, it first
processes all containment updates to reconstruct the current
object containment hierarchy. For each StartContainment event
received, the child object specified in the event is added to the
children list of the parent. For each EndContainment event, the
child object is removed from the parent’s list. After processing

TABLE I
PARAMETERS USED FOR GENERATING RFID STREAMS.

Parameter Value(s) used
Duration of simulation 3 – 24 hours
Rate of pallet injection 1 per 4 – 600 seconds
Cases per pallet 8
Items per case 20
Read rate (RR) of readers 0.5 – 1 (default 0.85)
Overlap rate (OR) for shelf readers 0 – 0.8 (default 0.25)
Non-shelf reader frequency (fixed) 1 (interrogation) per sec
Shelf reader frequency (variable) 1 per sec – 1 per min (default)

all containment updates, the routine then processes the location
updates in this time step. For each location update, which can
be StartLocation, EndLocation, or Missing, the routine copies
the event to the new output stream. If the object specified in
the event has child objects in the containment hierarchy, this
location update is also copied to the output stream for each
child object and recursively for their contained objects.

A subtlety is that the routine also needs to remember each
object’s current location to suppress duplicate events in output.
Revisit Fig. 7. At time T3, object C2 was no longer contained
in P so we output a StartLocation to report its location in
L2. However, when we decompress the stream from level-2
compression, we will output a StartLocation for C2 at L2 at an
earlier time T2 (this update was compressed before due to the
containment with P). Then the SartLocation at T3 that reports
the same object at the same location becomes a duplicate. Our
decompression routine will remove all such duplicates.

VI. PERFORMANCE EVALUATION

We have implemented a prototype of our inference and
compression substrate in Java. In this section, we evaluate the
accuracy and efficiency of our inference techniques using both
synthetic traces emulating enterprise supply chains and real
traces from a laboratory warehouse setup. We also explore the
benefits of compression based on results of inference.

A. Simulation Design

We first developed a simulator that emulates deployments
of RFID readers in a large warehouse. Pallets arrive at the
warehouse at a certain rate. They are first read at the entry
door (using reader group 1). They then become unpacked. The
contained cases are scanned on the receiving belt (using reader
group 2), placed onto shelves for a period of stay (scanned
by reader group 3), and then repackaged (scanned by reader
group 4). The newly assembled pallets are rescanned on the
belt (using reader group 5) and finally read at the exit of
the warehouse (using reader group 6). The parameters for the
simulation are shown in Table I. The read rate (RR) parameter
specifies the probability that a tag is read by its closest reader.
The overlap rate (OR) parameter is applied to shelf readers
and specifies the probability that a tag is read by a nearby
reader to its left or right. The read frequencies of shelf readers
and non-shelf readers are controlled separately. This design
allows flexible settings of the simulation where items may
stay on shelves for hours and shelf readers may read less

10

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

Top K Edges of Highest Probabilities

0.2
0.4
0.6
0.8
0.9

0.93
0.95

Fig. 9. Evaluation results of the edge confirmation algorithm.

frequently than other readers. Synthetic data streams from the
simulator are fed to our inference and compression substrate.
Data inference is performed every epoch (which is 1 second).
We use entry door readings to “warm up” the graph model
but do not run inference at this location.

B. Accuracy of Data Inference

We first evaluate the accuracy of our inference techniques.
We created data streams with 6 pallets injected per hour, an
average shelving period of 1 hour, and a total simulation time
of 3 hours. An inference result is marked as an error if it is
inconsistent with the ground truth.

Containment Inference. We first study the effects of the
edge inference parameters, S, α, and β (shown in Eq. 4 and
Eq. 5), on containment inference. Our results show that the two
parameters, S and α, on the recent history of co-locations can
be tuned easily: The size of the history, S, limits the inference
accuracy when it is small, e.g., 4, 8, but offers no additional
benefit after the point of 32. The zipf parameter, α, yields
best accuracy when set to 0, indicating that recent co-location
instances are equally important to inference. Hence, we use
S = 32 and α = 0 in the rest of experiments.

The parameter β governs the beliefs between the recent
history, which can be noisy, and the past edge confirmation,
which may be obsolete. β = 1 gives all the weight to recent
history and β = 0 does the opposite. We compare the use of
fixed β values and an adaptive method that sets β based on
the number of conflicting observations (see Section IV-A).

Fig. 8(a) shows the results as the read rate (RR) is varied.
The adaptive method performs the best for different RR values
tested. Among the fixed values, large β values tend to produce
more errors in this workload. This is because many cases can
stay on the same shelf for an extended period of time and
their shelf readings are a main source of noise in containment
inference. Putting too much weight on such noisy recent
history causes many errors. In contrast, the edge confirmation
algorithm confirms the true parent from the readings from the
belt reader. The adaptive method can automatically apportion
its belief on such past confirmation based on the number of
conflicting observations received. We have also demonstrated
the effectiveness of the adaptive method when various overlap
rates, read rates, and read frequencies are used. The details
are available in the appendix.

We next evaluate our technique for edge confirmation. As
described in Section IV-A, at each node we compute the
normalized entropy h over all parent edges and check if h

is lower than a threshold λ (supposed to be relatively small).
To choose a universal λ for all nodes, it is helpful to model
each node using a k-valued random variable: if a node has
more than k parent edges, we consider the top k edges with
the highest probabilities; if a node has less than k edges,
we add a few virtual edges and assign them the smallest
non-zero probability. In this experiment, we vary k and λ

values. As Fig. 9 shows, all λ values under 0.9 offer similar
accuracy around 10%, irrespective of the choice of k. This is
because the critical information for parent edge confirmation
is often the sharp difference in probability between the top two
edges. However, when λ is set too high, over 0.9 here, more
false positives of edge confirmation occur, and the accuracy
becomes sensitive to the choice of k. Similar observations hold
for various read rates and overlap rates (see the appendix for
more details). Hence, we use λ=0.75 and k=2 in the rest of
study.

Location Inference. Location inference uses the node in-
ference method defined in Eq. 6 and Eq. 7. We now study the
effects of two parameters on location inference.

The parameter γ weighs the belief of an object’s recent
locations (favored by low γ values) against the belief of
its location inferred via containment (favored by high γ

values). Fig. 8(b) shows the results for varied γ values. Very
low γ values place most emphasis on the recent locations
(which function as fading colors). As such, if an object has
experienced several missed readings, it is likely to be inferred
to be in the “unknown” location even if its container has
been observed. High γ values place too much weight on the
containment information of an object, which can be unreliable
when containment is uncertain. Overall, we observe γ values
in [0.2, 0.4] to be favorable from this plot and many others
which cover a wide range of read rates, overlap rates, and
read frequencies (for more see the appendix). γ values in
this range offer a balance between an object’s recent colors
and containment relationships, with some more weight on the
former.

The parameter θ is the dampening factor on the belief of
the continued existence of an unobserved object in a recently
reported location. High θ values cause more quickly reduced
belief, making it more likely to refer the object to be in
the “unknown” location (e.g., in transit or missing). Fig. 8(c)
shows that as θ increases, the error rate quickly declines from
over 90%, flattens in the mid-range from 1 to 2, and then
degrades slightly with higher values. The initial decline occurs
because, with very low θ values, the inference takes long to
reduce its belief of the continued presence of an object even if
the object left a while ago. The deterioration with high θ values
occurs because the inference now drops its belief of continued
existence too quickly and identifies an object as being away
after just a few missed readings. Similar trends are observed
for different overlap rates and read frequencies.

Based on the above results, we use the adaptive algorithm
to set the β value but fixed values γ = 0.4 and θ = 1.25 in the
rest of the study. We demonstrate the validity of these values
for the real traces from our lab deployment in the next section.

Sensitivity to Read Rate. The next experiment reports the
effect of the read rate (RR) parameter on the accuracy of both

11

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

Read Rate

β = 1.0
β = 0.9
β = 0.8
β = 0.4
β = 0

Adaptive β

(a) Containment inference error for β

 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

γ

OR0_RR0.5
OR0_RR0.6
OR0_RR0.7
OR0_RR0.8

OR0_RR0.85
OR0_RR0.9

OR0_RR0.95
OR0_RR1

(b) Location inference error for γ

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

θ

OR0_RR0.5
OR0_RR0.6
OR0_RR0.7
OR0_RR0.8

OR0_RR0.85
OR0_RR0.9

OR0_RR0.95
OR0_RR1

(c) Location inference error for θ

 0

 10

 20

 30

 40

 50

 60

 0.5 0.6 0.7 0.8 0.9 1

Er
ro

r R
at

e
(%

)

Read Rate

Containment Inference Error
Location Inference Error

(d) Inference error for varied read rates

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Er
ro

r R
at

e
(%

)

Overlapping Rate

Containment Inference Error - 0.7
Containment Inference Error - 0.85

Location Inference Error - 0.7
Location Inference Error - 0.85

(e) Inference error for varied overlap rates

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

θ

Shelf Reader Frequency
1 sec

10 sec
30 sec
1 min

(f) Inference error (1 anomaly/100 sec)

Fig. 8. Containment and location inference results.

location and containment inference. We varied the read rate
uniformly for all readers. As Fig. 8(d) shows, when the read
rate is above 0.8 (observed in our lab deployment when the
environment is clear of metal objects), our location error rate
is less than 10% and the containment error rate is less than
20%. As the read rate decreases, the accuracy of containment
inference degrades faster than that of location inference. This
is because the location inference relies more on the recent
locations given our parameter setting, while the containment
inference suffers both the loss of parent edge confirmation due
to poorer readings from the belt readers and lack of consistent
observations in the recent history.

Sensitivity to Overlap Rate. We next vary the overlap rate
(OR) in a wide range [0, 0.8] with the read rate (RR) set to
0.85 and 0.7, respectively. We note that in practice one would
expect OR to be significantly less than 0.5, or otherwise would
consider improving the RFID setup to avoid excessive overlap
between readers. Fig. 8(e) shows the inference error rates.
First, for common setups where RR is in [0.8, 1] and OR

is in [0, 0.3], our system offers both location and containment
error rates within 10%. When stress testing our system with
higher OR values, we see that the location inference error
rates degrade modestly to 9% (RR=0.85) and 17% (RR=0.7)
when OR becomes 0.5. The main effect of OR on location
inference is to add more possible locations for each object
and in certain cases the readings from a nearby reader may
outnumber those from the closest reader, hence causing more
errors. In comparison, the containment error rates are higher
because containment inference heavily relies on co-location
information and significant overlap between readers makes
this information noisy. The reduced read rate (from 0.85 to
0.7) makes the co-location information even noisier and allows
fewer true containment relationships to be confirmed from the
belt readings, hence the worst performance in the top line.

Anomaly Detection. The traces used so far have not

captured any abnormal behaviors, which are expected to be
rare but of significant interest to the application. We next
simulated unexpected removals of objects from the warehouse,
representing theft or misplacement, at a rate of 1 removal every
100 seconds with random selection from all objects. We report
on the inference error rate in Fig. 8(f) as the most relevant
parameter, θ, is varied. This figure exhibits similar trends as
Fig. 8(c) and confirms that the θ values between 1 and 2 also
work well for anomaly detection. We also measured the delay
of anomaly detection as θ varies (the graph is shown in the
appendix). In general, large θ values yield short delay whereas
small θ values cause high delay. We observe that the region
of 1 and 2 gives the delay as good as larger θ values. Thus,
θ ∈ [1,2] is shown to offer both accuracy and short detection
delay.

C. Accuracy Results using a Lab Deployment

To evaluate our system in real-world settings, we developed
an RFID lab with 7 readers based on ThingMagic’s Mercury5
RFID system. We used 20 cases containing 5 items each, and
attached Alien squiggle tags to all cases and items. We used
the 7 readers to implement 1 entry door reader, 1 belt reader,
4 shelf readers, and 1 exit reader. Cases with contained items
transitioned through the readers in that order, receiving around
5 interrogations from each nonshelf reader and dozens from a
shelf reader. The shelf readers had overlapping read ranges as
they were placed close to each other. We created a collection
of traces with distinct characteristics regarding the environ-
mental noise, overlap between readers, and tag orientations.
We observed that tag orientations had little impact on the read
rate, verifying that squiggle tags are orientation-insensitive
when used with circularly-polarized readers. Hence, we used
the following 8 traces in our experiments:

• T1 represents the combination of good read rates, an

12

TABLE II
INFERENCE ERROR RATES USING LAB TRACES

(RR , OR) = (0.85, 0.25) (0.85, 0.5) (0.7, 0.25) (0.7, 0.5)
T1 T2 T3 T4

Loc. 7.0% 8.4% 13.3% 16.5%
Cont. 9.0% 14.2% 14.3% 17.3%

T5 T6 T7 T8
Loc. 11.7% 15.4% 16.1% 18.4%
Cont. 14.0% 15.5% 16.8% 19.7%

average of 0.85 across all readers, and limited overlap
rates, an average of 0.25 for shelf readers, which we
obtained by using low power of readers.

• T2 represents the combination of good read rates, an
average of 0.85, and significant overlap rates, an average
of 0.5, which we obtained using high power of readers.

• T3 differs from T1 by including severe noise in the sens-
ing environment. More specifically, we placed a metal bar
on each shelf that is 1/3 the length of the shelf, causing
the average read rate to drop to 0.7.

• T4 differs from T2 with an average read rate of 0.7.
• T5 to T8 extend T1 to T4, respectively, with added

anomalies. With 20 cases placed on shelves, we randomly
selected 4 cases and removed one item from each case
to generate missing objects in the trace.

Each trace is 15 minutes long with 15,000 to 22,000 readings.
We ran inference every 3 minutes and manually collected
ground truth, including object locations and containment rela-
tionships, at those time points.

Table II reports the inference results. We make several
observations. First, despite the added environmental noise
and anomalies of missing objects, our inference techniques
still offer the location and conference inference error rates
within 20%. Second, under the normal conditions of RR=0.85
(without the metal bars placed on shelves), both error rates are
within or around 15%. Third, for the traces without anomalies
(T1 to T4), our inference results are similar to our simulation
results shown in Fig. 8(d) and Fig. 8(e), hence demonstrating
the validity of our simulation results. In particular, we observe
that the containment inference error rates are somewhat better
than those in Fig. 8(e). This is because the belt reader in our
lab deployment produced more readings (5-6 readings on the
average) for each tag than in our simulation (3-4 per tag).
These extra readings allowed our edge confirmation algorithm
to confirm more containment relationships. In some cases,
the location inference error rates are slightly higher than the
simulation results. The main reason, as we observed, is that for
some tags more readings were returned from a nearby reader
than from the closest reader in the lab traces. Such irregular
data makes location inference more difficult.

We next discuss two limitations of our lab data set and the
methods that we employ to overcome them in our evaluation.
First, our data set with 100 items and 20 cases is not
large enough for evaluating the efficiency and scalability of
inference. In the next section we will extend our evaluation
with high-volume synthetic streams that contain hundreds of
thousands of objects. Second, our data set covers several, but
not all, combinations of read rates and overlap rates across

TABLE III
COSTS OF UPDATE AND INFERENCE OPERATIONS (SEC)

Num. Objects Update Inference Total
25068 0.0055 0.0638 0.0693
55118 0.0079 0.1518 0.1597
75066 0.0096 0.2295 0.2392
115144 0.0141 0.4249 0.4389
155044 0.0199 0.6313 0.6512
172550 0.0229 0.7345 0.7573

readers. Due to limited resources, it is hard to produce all pos-
sible combinations through manual configuration. Fortunately,
our results using the lab traces match the simulation results
presented above. Hence, our simulation results obtained for a
broad range of parameter settings can serve as an indicator of
the performance expected to be seen in real deployments.

D. Efficiency of Data Capture and Inference

We next evaluate the efficiency of our system in both
memory usage and processing speed. To do so, we used a
high pallet injection rate of 1 every 4 seconds (900 pallets per
hour). The tests were performed on a linux server with Intel
2.33GHz Xeon CPU and 8GB memory running JVM 1.6.0.
The maximum Java allocation pool size was set to 5.5GB.

Processing Speed. Table III reports the processing time for
graphs of different sizes. With the increasing graph size shown
in the first column of the table, the cost of graph update for
all active readers and the cost of inference on the graph in
each epoch (which is a second) are reported in the second and
third columns. As can be seen, both the update and inference
costs are less than a second, with the inference being the
dominant cost. The total cost is reported in the last column. As
is shown, the total cost is 0.76 second for the largest graph size,
which uses an already high injection rate of one pallet every 4
seconds. These results show that our data capture and inference
techniques can keep up with high-volume RFID streams, a key
requirement of RFID monitoring and tracking.

Memory Usage. The memory usage in our system is
dominated by the size of the graph. In this experiment, we
measured the memory usage with varied graph sizes. Note that
when an object leaves a warehouse, we remove its node and
all of the associated edges to keep the graph small. We also
observe that the graph size can be reduced by pruning edges
for which the containment inference yields low confidence.
The confidence value here is the value in Eq. 5 but before
normalization and thus is insensitive to the presence of other
edges. To explore this factor, we applied a threshold for
pruning edges and varied it from 0 to 0.75.

Fig. 10(a) shows the rate of memory usage increase as the
graph size grows (until our system runs out of memory). First,
we see that the memory usage increases fast without edge
pruning but less so with increased thresholds for pruning.
With a threshold of 0.75, pruning is able to keep the size
of the graph under 1.2GB, even with 400,000 objects present
in the system. In addition, the memory growth of using the
0.5 and 0.75 thresholds is shown to be close to linear, rather

13

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 50 100 150 200 250 300 350 400

G
ra

ph
 S

iz
e

(M
B)

Node Count (k)

Threshold
0

0.25
0.5

0.75

(a) Memory usage

 50

 60

 70

 80

 90

 100

 0.5 0.6 0.7 0.8 0.9 1

F-
m

ea
su

re
 (%

)

Read Rate

SMURF
Inference - 100% Cont.

Inference - 50% Cont.
Inference - 0% Cont.

(b) Event error rate

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

%
 o

f O
rig

in
al

 F
ile

 S
iz

e

Read Rate

Inference+L2 (Both)
Inference+L1 (Both)

Inference+L2 (Loc Only)
Inference+L1 (Loc Only)

(c) Compressed location and containment output

Fig. 10. Memory test and evaluation of the output event stream.

than the worse-case quadratic expansion in the number of
nodes. Finally, we note that the pruned edges have little effect
on the location inference error rate (less than 1% difference
between no pruning and pruning with the threshold 0.75), but
may cause up to 8.2% increase in error rate for containment
inference, which is a small cost to pay if memory is scarce.

E. Accuracy and Data Reduction of the Output Event Stream

After data inference, our system translates inference results
into output events using level 1 or level 2 compression (Section
V). We next compare the final output of our system against
SMURF [11], a state-of-the-art RFID data cleaning system.
SMURF applies smoothing with an adaptive window to miti-
gate the missed reading problem. To enable a comparison to
our output, we extend SMURF as follows: (i) We use the static
reader locations to estimate object locations as readings are
smoothed in. (ii) If an object is observed by multiple readers,
we compute the strength of each reader as the percentage of
readings in its current window and report the location of the
reader with the highest strength as the object’s location. (iii)
We finally apply level 1 compression to produce a compressed
event stream. SMURF does not support containment inference

or level 2 compression, which is unique to our system. For
these reasons, we only consider object location events in the
output when compared to SMURF.

In our experiments we used a 16 hour trace with the steady-
state volume of 2860 objects (when the numbers of arriving
and departing pallets are equal). We varied the read rate for
all the readers from 0.5 to 1 with the overlap rate set to 0.25.

Accuracy of Output Events. Our accuracy metric for the
output stream is event-based: for each event in the output, we
determine if it is present in a compressed event stream of the
ground truth. We use precision to capture the percentage of
returned events that exist in the ground truth stream, and recall

to capture the percentage of events in the ground truth stream
that are returned in our output. We combine them into the
metric F-measure = 2*precision*recall/(precision+recall).

Fig. 10(b) compares SMURF and our system in F-measure
for location inference. Since the compression technique does
not affect accuracy, we use level 2 compression here. The two
solid lines in the figure show that our system outperforms
SMURF by more than 10% in both the low and high read
rate ranges. In the low range, this is largely due to SMURF
being simply a smoothing technique: it can smooth in readings

in certain cases when an object is missed by its reader.
However, given several consecutive missed readings, it tends
to believe that this object has moved away from its location.
In contrast, our system exploits stable containment, i.e., using
the location of the container or contained objects to infer
this object’s location, thereby overcoming the problem of
consecutive missed readings. As the read rate approaches
100%, the accuracy of SMURF remains below 90%. This is
due to the de-duplication process employed by SMURF. When
an object arrives at a new location, its adaptive window for
smoothing starts small. If it is observed by multiple readers,
there is a good chance that the strength computed from the
windows for these readers is all the same. Then the choice
between these readers is random, hence causing the errors.

Furthermore, we consider the cases where only a percentage
(e.g., 50% and 0%) of objects are placed in a container, hence
permitting limited benefits of using the containment informa-
tion in location inference. In the extreme case of 0% con-
tainment (which is rare in practice), SMURF outperforms our
inference in the range [0.6, 0.8] because without containment
information, SMURF’s dynamic window technique is more
adaptive than our location inference technique that records the
last n observed colors and employs color fading. However,
given larger read rates (> 0.8), SMURF produces more errors
because its dynamic window produces more false positives
than our technique and its de-duplication process causes errors
as explained above. The curve for 50% containment lies in
between those for 100% and 0% containment.

Compression Ratio. To study the effect of compression,
we measure the size of a compressed event output against the
size of the initial input of raw RFID readings (i.e., compression

ratio). Fig. 10(c) shows results for two output formats.
First, we only include location information in the output

(shown by the two dashed lines in Fig. 10(c)). Since our
system supports containment inference, besides level 1 com-
pression it can also apply level 2 compression to suppress
location updates of contained objects. From the figure we
can see that level 2 compression offers a greater reduction
in output size than level 1 for almost all read rates, resulting
in a compression ratio of 10% when the read rate exceeds 0.8.
We note that SMURF’s output size is always larger than level
2 compression, hence omitted in the graph for readability.

Second, we further include the containment information in
the output (shown by the two solid lines in the figure). We
again observe that level 2 compression significantly outper-

14

forms level 1 compression. It is also interesting to see that
including both location and containment information using
level 2 compression yields less output than including only
location information using level 1 compression. It takes less
than 20% of the raw input data size to include such rich
information when the read rate reaches 80%.

In summary, our system outperforms SMURF for object
location updates in both error rate and compression ratio.
Moreover, containment inference is unique to our system and
allows level 2 compression that produces rich location and
containment information yet at a much reduced data volume.

VII. RELATED WORK

RFID stream processing. Several techniques have been
proposed recently to clean noisy RFID data streams [10],
[6], [11], [20]. The most relevant to our work is the HiFi
system [10], [6] that performs per-tag smoothing using the
SMURF algorithm [11] and multi-tag aggregation, but does
not capture containment relationships between objects or esti-
mate object locations via containment. We have experimentally
demonstrated the benefits of our techniques over SMURF. Our
prior research considered the use of a single mobile reader to
scan objects repeatedly from different angles and distances,
and developed inference techniques to derive precise object
locations [21]. Our work presented in this paper focuses on
a network of static readers and infers both object location
and containment relationships. Other research on probabilistic
RFID query processing has focused on the architectural design
[12] or event pattern detection [13], but has not addressed com-
bined location and containment inference. Since our system
produces an event stream with rich location and containment
information, we can feed our output stream to probabilistic
query processing to derive useful high-level information.

RFID databases. General RFID data management issues
including inference are discussed in [22]. Siemens RFID
middleware [15] uses application rules to archive RFID data
streams into databases. The Cascadia system [23] offers an
infrastructure for specifying event patterns, extracting events
from raw RFID data, and storing them into a database. Insides
RFID databases, advanced techniques are available to integrate
data cleansing with query processing [24], to recover high-
level information from incomplete, noisy data by exploiting
known constraints and prior statistical knowledge [25], and
to use effective path encoding schemes to answer tracking
queries and path oriented queries. Furthermore, effective com-
pression is available through the use of disk-based sorting and
summarization operations [14]. These techniques, however,
are not designed for fast low-level inference and compression
of raw RFID streams. Furthermore, none of them supports
containment inference or has demonstrated performance for
inference over high volume RFID streams.

Sensor data management. Recent work on GPS sensor
readings is related to our work since it supports use-defined
views using model-based probabilistic inference [26]. How-
ever, GPS data differs from RFID data because it already re-
veals object locations and GPS applications are not concerned
object containment relationships.

VIII. CONCLUSIONS

In this paper, we presented a novel data inference and com-
pression substrate over RFID streams to address the challenges
of incomplete data, insufficient information and high volumes.
Our substrate employs a time-varying graph model to capture
inter-object relationships such as containment, and employs a
probabilistic inference algorithm to determine the most likely
location and containment for each object. Our results showed
that our techniques achieve error rates below 15% for location
estimates for a wide range of RFID read rates, and within 20%
for containment estimates when the read rate reaches 80%. For
future work, we plan to extend our inference and compression
substrate to a mix of static and mobile readers and to handle
query processing in distributed environments.

REFERENCES

[1] S. Garfinkel and B. Rosenberg, Eds., RFID: Applications, Security, and

Privacy. Addison-Wesley, 2005.
[2] Y. Yao and J. Gehrke, “Query processing in sensor networks.” in CIDR,

2003.
[3] S. Madden, M. J. Franklin, et al., “The design of an acquisitional query

processor for sensor networks,” in SIGMOD, 2003, pp. 491–502.
[4] A. Deshpande, C. Guestrin, et al., “Model-driven data acquisition in

sensor networks.” in VLDB, 2004, pp. 588–599.
[5] B. Feder, “Despite Wal-Mart’s edict, radio tags will take time,” http:

//www.epcglobalinc.org/, Dec 2004.
[6] S. R. Jeffery, G. Alonso, et al., “Declarative support for sensor data

cleaning.” in Pervasive, 2006, pp. 83–100.
[7] K. Finkenzeller, RFID handbook: radio frequency identification funda-

mentals and applications. John Wiley and Sons, 1999.
[8] C. Floerkemeier and M. Lampe, “Issues with RFID usage in ubiquitous

computing applications.” in Pervasive, 2004, pp. 188–193.
[9] B. Violino, “RFID opportunities and challenges.” http://www.rfidjournal.

com/article/articleview/537.
[10] M. J. Franklin, S. R. Jeffery, et al., “Design considerations for high

fan-in systems: The HiFi approach.” in CIDR, 2005, pp. 290–304.
[11] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin, “Adaptive cleaning

for RFID data streams.” in VLDB, 2006, pp. 163–174.
[12] M. N. Garofalakis, K. P. Brown, et al., “Probabilistic data management

for pervasive computing: The data furnace project.” IEEE Data Eng.

Bull., vol. 29, no. 1, pp. 57–63, 2006.
[13] C. Ré, J. Letchner, et al., “Event queries on correlated probabilistic

streams,” in SIGMOD, 2008, pp. 715–728.
[14] H. Gonzalez, J. Han, et al., “Warehousing and analyzing massive RFID

data sets.” in ICDE, 2006, p. 83.
[15] F. Wang and P. Liu, “Temporal management of RFID data.” in VLDB,

2005, pp. 1128–1139.
[16] EPCglobal Inc., “EPCglobal tag data standards version 1.3.” http://www.

epcglobalinc.org/, Mar 2006.
[17] Y. Nie, R. Cocci, et al., “Spire: Efficient data interpretation and

compression over RFID streams,” Department of Computer Science,
University of Massachusetts Amherst, Tech. Rep., 2009. [Online].
Available: http://spire.cs.umass.edu/pubs/tkde-all.pdf

[18] R. S. Barga, J. Goldstein, et al., “Consistent streaming through time: A
vision for event stream processing.” in CIDR, 2007, pp. 363–374.

[19] W. M. White, M. Riedewald, et al., “What is ”next” in event process-
ing?” in PODS, 2007, pp. 263–272.

[20] N. Khoussainova, M. Balazinska, and D. Suciu, “Towards correcting in-
put data errors probabilistically using integrity constraints,” in MobiDE,
2006, pp. 43–50.

[21] T. Tran, C. Sutton, et al., “Probabilistic inference over RFID streams in
mobile environments,” in ICDE, 2009, pp. 1096–1107.

[22] S. S. Chawathe, V. Krishnamurthy, et al., “Managing RFID data.” in
VLDB, 2004, pp. 1189–1195.

[23] E. Welbourne, N. Khoussainova, et al., “Cascadia: a system for spec-
ifying, detecting, and managing RFID events,” in MobiSys, 2008, pp.
281–294.

[24] J. Rao, S. Doraiswamy, et al., “A deferred cleansing method for RFID
data analytics,” in VLDB, 2006, pp. 175–186.

[25] J. Xie, J. Yang, et al., “A sampling-based approach to information
recovery,” in ICDE, 2008, pp. 476–485.

15

[26] B. Kanagal and A. Deshpande, “Online filtering, smoothing and proba-
bilistic modeling of streaming data,” in ICDE, 2008, pp. 1160–1169.

Yanming Nie is currently pursuing the Ph.D. degree in
the School of Computer Science at Northwestern Polytechnic
University, China. He was a visiting student at the University
of Massachusetts Amherst. His research interests include data
stream processing, uncertain data management, and RFID data
management.

Richard Cocci received the B.S. degree and the M.S. degree
in Computer Science from the University of Massachusetts
Amherst in 2006 and 2008, respectively. His research interests
lie in RFID data management.

Zhao Cao received the B.S. degree in computer science
from Beijing Institute of Technology, China, in 2004. He is
currently pursuing a Ph.D in Computer Science at Beijing
Institute of Technology. He was a visiting student at the
University of Massachusetts, Amherst from September 2008
to March 2010.

Yanlei Diao is an Assistant Professor in the Department
of Computer Science at the University of Massachusetts.
Her research interests are in information architectures and
data management systems. She was a recipient of the Na-
tional Science Foundation Career Award and a finalist for
the Microsoft Research New Faculty Fellowship. Her PhD
dissertation won the 2006 ACM-SIGMOD Dissertation Award
Honorable Mention.

Prashant Shenoy is currently a Professor of computer
science at the University of Massachusetts. His research inter-
ests are in operating and distributed systems.He has been the
recipient of the National Science Foundation Career Award,
the IBM Faculty Development Award, the Lilly Foundation
Teaching Fellowship, the UT Computer Science Best Disser-
tation Award, and an IIT Silver Medal.

APPENDIX

In this section, we provide additional results of our perfor-
mance evaluation.

The adaptive β method in containment inference. In
containment inference, the parameter β governs the beliefs
between the recent history, which can be noisy, and the past
edge confirmation, which may be obsolete. Fig. 11(a) to
Fig. 11(d) compare the performance of using fixed values of β

and the performance of an adaptive method that sets β based
on the number of conflicting observations obtained, where
each plot corresponds a different overlap rate (OR) used in
the simulation. These plots confirm that the adaptive method
performs the best for a wide range of read rates and overlap
rates tested.

Recall that the major source of noise in containment in-
ference is the co-location of multiple cases for an extended
period of time on the shelves. To capture such noise, we
further generated traces with different shelf reader frequencies.
Fig. 11(e) shows the results. When the noise is high (e.g.,
the shelf reader frequency is once per sec), high β values
(β > 0.85) give worse accuracy due to its emphasis on recent
history. As the shelf reader frequency decreases, the noise
from the shelf readings reduces, the recent history becomes
more useful, and hence high β values improve their accuracy.
The lower β values, favoring the past confirmation, tend to
work well across different reader frequencies. Their accuracy
degrades somewhat as fewer shelf readings are generated
because the remaining readings mostly involve containment
changes, making it harder to infer containment. Finally, the
adaptive β algorithm is shown to work the best across different
read frequencies.

Choosing the γ value in location inference. In location
inference, the parameter γ weighs the belief of an object’s
recent locations (favored by low γ values) against the belief
of its location inferred via containment (favored by high γ

values). Fig. 14(a) to Fig. 12(d) report the location inference
error rates as the γ value varies, where each plot shows
multiple lines for different read rates (RR) and corresponds
to a particular overlap rate (OR) used. Fig. 12(e) reports the
effect of γ on location inference as the read frequency is varied
(where the RR and OR parameters were set to their default
values). These results confirm that there is a stable region
of γ, [0.2, 0.4], where location inference provides the best
performance.

Choosing the θ value in location inference. In location
inference, the parameter θ is the dampening factor on the
belief of the continued existence of an unobserved object in a
recently reported location. High θ values cause more quickly
reduced belief, rendering it more likely to refer the object
to be in the “unknown” location (e.g., in transit or missing).
Fig. 13(a) to Fig. 13(d) report the location inference error rates
as the θ value varies, where each plot shows multiple lines
for different read rates (RR) and corresponds to a particular
overlap rate (OR) used. Fig. 13(e) reports the effect of γ on
location inference as the read frequency is varied (where the
RR and OR parameters were set to their default values). These
results confirm that there is a stable region of θ, [1, 2], where

16

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

Read Rate

β = 1.0
β = 0.9
β = 0.8
β = 0.4
β = 0

Adaptive β

(a) Varying the read rate (OR=0)

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

Read Rate

β = 1.0
β = 0.9
β = 0.8
β = 0.4
β = 0

Adaptive β

(b) Varying the read rate(OR=0.25)

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

Read Rate

β = 1.0
β = 0.9
β = 0.8
β = 0.4
β = 0

Adaptive β

(c) Varying the read rate (OR=0.5)

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

Read Rate

β = 1.0
β = 0.9
β = 0.8
β = 0.4
β = 0

Adaptive β

(d) Varying the read rate (OR=0.8)

 0

 10

 20

 30

 40

 50

1 sec 10 sec 30 sec 1 Min

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

Reader Frequency (time/Observation)

β = 1.0
β = 0.95
β = 0.9
β = 0.85
β = 0.8
β = 0.4
β = 0

Adaptive β

(e) Varying the read frequency

Fig. 11. Choosing appropriate values of the β parameter: comparison between fixed β values and the adaptive β method as the read rate (RR), the overlap
rate (OR), and the read frequency vary.

location inference provides the best performance.
Choosing the k and λ values in edge confirmation. As

described in Section IV-A, at each node we compute the
normalized entropy h over all parent edges and check if h

is lower than a threshold λ (supposed to be relatively small).
To choose a universal λ for all nodes, it is helpful to model
each node using a k-valued random variable. Fig. 14 verifies
through different read rate and overlap rate combinations that
all λ values under 0.9 offer the best accuracy, irrespective of
the choice of k. When λ is set over 0.9 here, the accuracy
degrades and becomes sensitive to the choice of k.

Results of anomaly detection. Fig. 15(a) exhibits similar
trends as Fig. 8(c) and confirms that the θ values between 1 and
2 also work well for anomaly detection. We also measured the
delay of anomaly detection as θ varies as shown in Fig. 15(b).
In general, large θ values yield short delay whereas small θ

values cause high delay. We observe that the region of 1 and
2 gives the delay as good as larger θ values. Hence the region
of 1 and 2 for θ is shown to provide good performance for
both accuracy and detection delay.

17

 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

γ

OR0_RR0.5
OR0_RR0.6
OR0_RR0.7
OR0_RR0.8

OR0_RR0.85
OR0_RR0.9

OR0_RR0.95
OR0_RR1

(a) Varying the read rate (OR=0)

 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

γ

OR025_RR0.5
OR025_RR0.6
OR025_RR0.7
OR025_RR0.8

OR025_RR0.85
OR025_RR0.9

OR025_RR0.95
OR025_RR1

(b) Varying the read rate(OR=0.25)

 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

γ

OR05_RR0.5
OR05_RR0.6
OR05_RR0.7
OR05_RR0.8

OR05_RR0.85
OR05_RR0.9

OR05_RR0.95
OR05_RR1

(c) Varying the read rate (OR=0.5)

 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

γ

OR08_RR0.5
OR08_RR0.6
OR08_RR0.7
OR08_RR0.8

OR08_RR0.85
OR08_RR0.9

OR08_RR0.95
OR08_RR1

(d) Varying the read rate (OR=0.8)

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1
Lo

ca
tio

n
In

fe
re

nc
e

Er
ro

r R
at

e
(%

)
γ

Shelf Reader Frequency
1 sec

10 sec
30 sec
1 min

(e) Varying the read frequency

Fig. 12. Choosing appropriates values of the γ parameter as the read rate (RR), the overlap rate (OR), and the read frequency vary.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

θ

OR0_RR0.5
OR0_RR0.6
OR0_RR0.7
OR0_RR0.8

OR0_RR0.85
OR0_RR0.9

OR0_RR0.95
OR0_RR1

(a) Varying the read rate (OR=0)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

θ

OR025_RR0.5
OR025_RR0.6
OR025_RR0.7
OR025_RR0.8

OR025_RR0.85
OR025_RR0.9

OR025_RR0.95
OR025_RR1

(b) Varying the read rate(OR=0.25)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

θ

OR05_RR0.5
OR05_RR0.6
OR05_RR0.7
OR05_RR0.8

OR05_RR0.85
OR05_RR0.9

OR05_RR0.95
OR05_RR1

(c) Varying the read rate (OR=0.5)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

θ

OR08_RR0.5
OR08_RR0.6
OR08_RR0.7
OR08_RR0.8

OR08_RR0.85
OR08_RR0.9

OR08_RR0.95
OR08_RR1

(d) Varying the read rate (OR=0.8)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

θ

Shelf Reader Frequency
1 sec

10 sec
30 sec
1 min

(e) Varying the read frequency

Fig. 13. Choosing appropriates values of the θ parameter as the read rate (RR), the overlap rate (OR), and the read frequency vary.

18

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

K

Entropy Threshold
0.75

0.8
0.82
0.85
0.87
0.89

0.9
0.91
0.92
0.93
0.94
0.95

(a) Varying k and λ (RR=0.85, OR=0.5)

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

K

Entropy Threshold
0.75

0.8
0.82
0.85
0.87
0.89

0.9
0.91
0.92
0.93
0.94
0.95

(b) Varying k and λ (RR=0.7, OR=0.25)

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10

Co
nt

ai
nm

en
t I

nf
er

en
ce

 E
rro

r R
at

e
(%

)

K

Entropy Threshold
0.75

0.8
0.82
0.85
0.87
0.89

0.9
0.91
0.92
0.93
0.94
0.95

(c) Varying k and λ (RR=0.7, OR=0.5)

Fig. 14. Effects of choosing the top-k edges of the highest probabilities and the threshold λ on edge confirmation.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

Lo
ca

tio
n

In
fe

re
nc

e
Er

ro
r R

at
e

(%
)

θ

Shelf Reader Frequency
1 sec

10 sec
30 sec
1 min

(a) Inference error (1 anomaly/100 sec)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 0.5 1 1.5 2 2.5 3

A
no

m
al

y
D

et
ec

tio
n

D
el

ay
 (s

ec
)

θ

Shelf Reader Frequency
1 sec

10 sec
30 sec
1 min

(b) Detection Delay (1 Anomaly/100 sec)

Fig. 15. Accuracy and delay of anomaly detection.

