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Abstract

RFID technology can be used to significantly im-
prove the efficiency of business processes by pro-
viding the capability of automatic identification
and data capture. This technology poses many
new challenges on current data management sys-
tems. RFID data are time-dependent, dynamically
changing, in large volumes, and carry implicit se-
mantics. RFID data management systems need
to effectively support such large scale temporal
data created by RFID applications. These sys-
tems need to have an explicit temporal data model
for RFID data to support tracking and monitor-
ing queries. In addition, they need to have an
automatic method to transform the primitive ob-
servations from RFID readers into derived data
used in RFID-enabled applications. In this pa-
per, we present an integrated RFID data manage-
ment system – Siemens RFID Middleware – based
on an expressive temporal data model for RFID
data. Our system enables semantic RFID data
filtering and automatic data transformation based
on declarative rules, provides powerful query sup-
port of RFID object tracking and monitoring, and
can be adapted to different RFID-enabled applica-
tions.

1 Introduction
1.1 Background

RFID (radio frequency identification) technology uses
radio-frequency waves to transfer data between readers and
movable tagged objects, thus it is possible to create a physi-
cally linked world in which every object is numbered, iden-
tified, cataloged, and tracked. RFID is automatic and fast,
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and does not require line of sight or contact between read-
ers (or sensors) and tagged objects. With the significant
advantages of RFID technology, RFID is being gradually
adopted and deployed in a wide area of applications, in-
cluding supply chain management [1, 2, 3, 4, 5], retail [6],
anti-counterfeiting [7], security [8], and healthcare. For ex-
ample, Siemens Business Services launched a pilot project
to track patients with RFID bracelets during hospital ad-
missions [9].

Through the automatic data collection, RFID technol-
ogy can achieve greater visibility and product velocity
across supply chains, more efficient inventory manage-
ment, easier product tracking and monitoring, reduced
product counterfeiting and theft, and much reduced labor
cost. On the other hand, there is a chasm between the phys-
ical world and the interpreted world through sensor obser-
vations. These observations need to be automatically in-
terpreted and semantically transformed into business logic
data, before they can be integrated into business applica-
tions, such as ERP and WMS.

1.2 Characteristics of RFID Data and Problem State-
ments

Despite the diversity of RFID applications, RFID data
share common fundamental characteristics, which have to
be fully considered in RFID data management systems.

Temporal and dynamic. RFID applications dynamically
generate observations and the data carry state changes.
All sensor observations are associated with the timestamps
when the readings are made; objects’ locations change
along the time; the containment relationships change along
the time, and all EPC [10] related transactions are also as-
sociated with time. (EPC – Electronic Product Code – is
an identification scheme for universally identifying physi-
cal objects, defined by standard committees [10].) It is es-
sential to model all such information in an expressive data
model suitable for application level interactions, including
tracking, monitoring, and application integration [11, 12].

Implicit semantics and inaccuracy of data. In an RFID
system, a reader observation comprises of the reader EPC,
the observed EPC value of an RFID tag, and the timestamp
when the observation occurs. These data carry implicit in-
formation, such as changes of states and business processes
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(e.g., change of locations), and further derived information
such as aggregations (e.g., containment relationship among
objects). Thus, a framework is needed to automatically
transform observations into business logic data.

Meanwhile, while the accuracy of current RFID readers
is improving, in current RFID applications, there are still
erroneous readings, such as duplicate readings or missing
readings. Such erroneous data have to be semantically fil-
tered.

Streaming and large volume. RFID data are generated
quickly and automatically, and accumulated for tracking
and monitoring. The data volume generated can be enor-
mous, which requires a scalable storage scheme, to assure
efficient queries and updates.

Integration. RFID data have to be integrated with exist-
ing applications for product tracking and monitoring. This
requires an RFID data management system be easily con-
figured to be integrated into different applications, with
minimum integration cost.

In early RFID solutions, sensor readings are directly
sent to applications and services, thus it is up to the appli-
cations to interpret the preliminary readings, and generate
business logic data. This approach has much complexity on
RFID data interpreting, and is not scalable and adaptable.

Recently, major IT vendors are moving quickly to pro-
vide RFID solutions [13, 14, 15, 16, 17]. These sys-
tems provide sophisticated middleware-based platforms for
RFID applications, and serve as bridges between the phys-
ical RFID world and the rest software infrastructure. High
level data modeling, on the other hand, is up to applica-
tions.

1.3 Our Approach to RFID Data Management

In this paper, we propose an expressive temporal-based
data modeling of RFID data, using aDynamic Relationship
ER Model (DRER). By maintaining the history of events
and state changes, the data model captures the fundamental
RFID application logic into the data model itself, thus com-
plex queries can be easily supported. With a rules-based
framework, observations can be automatically transformed
into business logic data, through user configured rules. By
bringing all the technologies together, we buildSiemens
RFID Middleware, an integrated RFID data management
system. Salient features of our approach include:

– Expressive Data Model. DRER is built on ER model,
with minimum extensions. The semantics of the data
model is generalized from RFID data, thus fits per-
fectly with RFID data.

– Effective Query Support. Based on the temporal data
model, common RFID queries such as RFID object
tracking and monitoring, and other complex queries,
can be effectively supported. Moreover, partitioning-
based archiving assures efficient updates and queries.

– Automatic Data Acquisition and Transformation.
With a framework of rules-based transformation, the
system achieves automatic data filtering and transfor-
mation, with minimum configuration.

– Adaptable and Portable. The business-logic integrated
data model and the rules-based data transformation
can be adapted to different RFID applications, and
substantially reduce the cost of managing RFID data
and integrating RFID data into business applications.

This paper is organized as follows. In Section 2, we pro-
pose the Dynamic Relationship ER Data Model for RFID
data, then we show in Section 3, how the data model can
benefit queries in an RFID data management system. In
Section 4, we discuss how to semantically process RFID
data and automatically transform RFID data into business
logic. Then, in Section 5, we show how to efficiently sup-
port queries and updates through partitioning-based archiv-
ing. Next in Section 6, we discuss Siemens RFID Middle-
ware that integrates all the technologies into an adaptable
system. Section 7 discusses experiments and Section 8 dis-
cusses related work. Section 9 concludes the paper.

2 RFID Data Modeling
2.1 Motivation

A Sample RFID-enabled Application. Figure 1(a) shows
a simplified example of an RFID-enabled supply chain sys-
tem. In a supplier warehouse, each product item is EPC-
tagged. (Here we assume products are tagged at case level.
Our methods can be generalized to any tagging level.) The
tagged cases are packed onto a pallet at the supplier ware-
house (location L001), where the EPC tags of both the
cases and the containing pallet is automatically scanned
by an RFID reader R1. (Here we assume all RFID tags
are passive tags, which are the cheapest and most com-
monly used in current RFID applications.) Then, at the
warehouse loading zone, pallets are loaded into a truck,
and both the pallets and the truck are scanned by another
reader R2. The truck then departs to a retail store, through
a predefined route (location L002). At the unloading zone
of the retail store (location L003), all pallets are unloaded
from the truck, and all cases are unpacked from the pallets.
All objects, the truck, pallets and cases, are scanned by an-
other reader R3, and then the cases are stocked in the store.
Eventually, when cases are purchased by customers (loca-
tion L004), they are scanned by reader R4 at the register.
In the whole process, observations from RFID readers are
made automatically, and data are also collected automati-
cally.

One key concept in the above RFID application isloca-
tion [18]. A location can be a geographic location or a sym-
bolic location. Here we assume symbolic location, which
can be a warehouse, a shipping route, a surgery room, or
a smart box [19]. Location changes come with the move-
ment of objects and business processes. Another key con-
cept isaggregation, such ascontainment. Containment de-
termines a hierarchical relationship among objects. For ex-
ample, a pallet is loaded with cases, or a toolbox contains
a set of tools [20]. The containment relationship implies
important logic information, for example, a truck leaving
a warehouse implies that all its contained objects leave the
warehouse too.
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Figure 1: A Sample RFID-Enabled Supply Chain System

We also observe that RFID data are highly dynamic, and
the data always carry state changes. On the other hand,
objects are associated with a unique ID encoded in EPC,
and these IDs are static and non-alterable.

Based on these observations, we propose a temporal-
oriented data model for RFID data, by first identifying the
fundamental entities, as discussed next.

2.2 Fundamental Entities in RFID Systems

In an RFID system, there are two basic categories of data:
static dataanddynamic data[21, 22]. Static data are re-
lated to commercial entities and product/service groups,
such as location information, product level and serial level
information. Dynamic data are specific to individual items.
There are two types of dynamic data:instance datasuch as
serial number and date of manufacture, andtemporal data
such as observations, location and containment changes of
objects, which are all captured through EPC-tag readings.
Among all the data, the temporal data are directly related to
the fundamental business logic in RFID applications, such
as the movement and transaction of products, and are cru-
cial for an RFID data system to track and monitor objects.

By examining RFID systems, we summarize the follow-
ing primary entities that interact with each other and gen-
erate business processes.

– Objects. These include all EPC-tagged objects, such
as items, cases, pallets, trucks, even patients with
RFID-bracelets. For example, the objects in Figure
1(a) include cases, pallets, and trucks.

– Sensors/Readers. RFID readers use radio-frequency
signals to communicate with EPC tags and read the
EPC values. We have readers R1, R2, R3 and R4
(marked with circles) in Figure 1(a). Each RFID

reader (or its antenna) is also uniquely identified by
its EPC code. In this paper, we use “reader” and “sen-
sor” interchangeably.

– Locations. A location is symbolized to represent
where an object is/was. It can be a warehouse, a retail
store, a distribution center, or a route between two lo-
cations. For example, in Figure 1(a), the locations in-
clude: warehouse(L001), route from the warehouse to
a retail store(L002), retail store (L003) and customers
(L004). In a smart box application [19], locations are
simply “in-box” and “out-of-box”. The granularity
of locations can be defined according to application
needs. A location is also associated with an owner.

– Transactions. There can be business transactions in
which EPC is involved. For example, a checkout in-
volves a credit card transaction with many EPC read-
ings. Transactions are business-specific, i.e., with dif-
ferent transaction types. Transactions are not consid-
ered in many RFID applications.

Next we discuss how these entities interact with each
other.

2.3 Dynamic Interactions between RFID Entities

While the above discussed entities are themselves static
in the business processes, they dynamically interact with
each other and generate movement, workflow, and busi-
ness logic. These interactions generate events and states
changes. State changes include:

– Object location change. For instance, the truck and its
loaded pallets leave the warehouse.

– Object containment relationship change. For example,
cases are packed onto pallets, as shown in Figure 1(a).
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– Reader location change. For instance, a reader is de-
ployed at a new location.

There are also another state change, ownership change,
for example, cases unloaded into the retail store. This can
be combined with location changes, since a location is al-
ways associated with an owner. The information about dur-
ing which period an object is in certain state is essential and
has to be captured.

Besides state changes, there are also events generated in
the interactions, including:

– Observations. These are generated when readers in-
teract with objects.

– Transacted items. These are generated when an object
participates into a transaction.

All events are associated with timestamps when they oc-
cur.

In a summary, the entities have dynamic relationships
with each other, which lead to events and states changes.
However, current RFID data management systems only
store and manage events, and state information is implicit
and has to be derived. This makes it very complicated to
search state information. For example, based on the event-
based model proposed in [22], it takes 8 steps for the query:
“where are the 5 CDs that were supposed to be in the last
order?”.

One of the essential goals of an RFID-enabled applica-
tion is to track objects and monitor the system at any lo-
cation, at any time, or both. This requires an expressive
data model that can explicitly represent the history of both
events and states, and capture fundamental business logic
into the data model itself, therefore complex queries such
as tracking and monitoring can be effectively supported.

In the following, we propose a Dynamic Relationship
ER Model (DRER) that fits perfectly with RFID data.

2.4 Dynamic Relationship ER Model (DRER)

DRER is a temporal extension of ER model. In ER model,
all entities and relationships are static or current. In an
RFID system, entities are static, but all the relationships
are dynamic. Here we naturally extend ER model by inher-
iting all the ER model semantics and simply adding a new
relationship – dynamic relationship, as shown in Figure 2.
(For simplicity, other attributes are ignored in the figure.)
There are two types of dynamic relationships: relationship
that generates events, and relationship that generates state
history. Here we use dash lines to represent state-based dy-
namic relationship, and dash-dot lines to represent event-
based dynamic relationship.

Two attributeststart and tend are associated with a
state-based dynamic relationship, to represent the lifespan
of that relationship; and an attributetimestamp is associ-
ated with an event-based dynamic relationship, to represent
the occurring timestamp of the event.

The simplicity of DRER is that, it requires minimum
extensions to ER model, by simply adding two new types
of relationships, each of which is associated with special
time-related attributes.

Thus, based on DRER data model, we have following
static entities for RFID data (Figure 2):SENSOR, OBJECT,
LOCATION, andTRANSACTION. State-based dynamic rela-
tionships include:SENSORLOCATIONgenerated fromSEN-
SOR and LOCATION, OBJECTLOCATIONgenerated from
OBJECT and LOCATION, CONTAINMENTgenerated from
OBJECTand itself; Event-based dynamic relationships in-
clude: OBSERVATIONgenerated fromOBJECTand SEN-
SOR, andTRANSACTIONITEMgenerated fromOBJECTand
TRANSACTION.

It is straightforward to implement DRER model in an
RDBMS. There are two types of mappings from the data
model to tables. Entities are mapped directly as entity ta-
bles. For a state-based dynamic relationship between two
entities, it is mapped as a table consisting of keys from both
entities, plus an interval[tstart, tend] to represent the
lifespan in which the relationship or the state exists. For an
event-based dynamic relationship, it is mapped as a table
consisting of keys from both entities, plus atimestamp to
represent the time when the event occurs. Normal (static)
relationships, if any, can be mapped as tables according to
common ER mapping rules.

We use symbol ‘UC’ to denotenow. ‘UC’ can be rep-
resented as ‘end-of-time’, e.g., “9999-12-31 23:59:999”, in
the database. In the remainder of this paper, our granularity
for time is a millisecond, thus two continuous events have a
difference of 1 millisecond. All the techniques we present
are equally valid for any granularity used by an application.

The tables for DRER model are described as follows.

(Static) Entity Tables

SENSOR(sensor epc, name, description)

The SENSOR table records the EPC, name and descrip-
tion of a sensor (Table 1).1

sensorepcnamedescription
1.255.1 R1 Packing reader
1.255.2 R2 Departure reader
1.255.3 R3 Unloading reader
1.255.4 R4 Checkout reader

Table 1:Sample SENSOR

OBJECT(epc, name, description)

The OBJECT table includes the EPC, name, and de-
scription of an EPC-tagged object (Table 2).

epc namedescription
1.1.101Case Containing items
1.1.102Case Containing items
1.1.103Case Containing items
1.1.104Case Containing items
1.2.1 PalletContaining cases
1.3.1 TruckLoaded with pallets

Table 2:Sample OBJECT

LOCATION(location id, name, owner)

1Here we use a pseudo notation of EPC code for illustration
purpose. The format of EPC is defined in [10].
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Figure 2: Dynamic Relationship ER Model

location id name owner
L001 Warehouse A Supplier A
L002 Route to retail CCarrier B
L003 Retailer store CRetailer C
L004 Customer Customer

Table 3:Sample LOCATION

transactionid transactiontype
TX00001 retail checkout
TX00002 retail checkout
TX00003 retail checkout
TX00004 retail checkout

Table 4:Sample TRANSACTION

The location table defines symbolic business locations
used for tracking, including id, name, and owner of a loca-
tion (Table 3).

TRANSACTION(transaction id, transac-
tion type)

Since transaction data are business specific, here we
simplify a transaction as a record with transaction id and
a transaction type (Table 4).

Here we only consider the fundamental attributes. If
additional attributes are needed, it can be extended with
an extension table. For example, for the SENSOR ta-
ble, there can be an extension table:SENSOREXT(epc,
property, value) .

Dynamic Relationship Tables

OBSERVATION(sensor epc, value,
timestamp)

This table records the raw reading data generated from
sensors (i.e., readers), including sensor’s EPC, tag’s EPC
value, and the reading timestamp (Table 5).

CONTAINMENT(epc, parent epc, tstart,
tend)

This table records in what period[tstart, tend] an
object (identified by its EPC) is contained in a parent object
(identified by its parent EPC) (Table 6).

sensorepcvalue timestamp
1.255.1 1.1.12004-11-01 10:33:00.100
1.255.1 1.2.12004-11-01 10:34:00.000
1.255.2 1.2.12004-11-01 10:35:00.001
1.255.3 1.1.12004-11-07 11:00:00.001
1.255.4 1.1.12004-11-08 15:30:00.010

Table 5:Sample OBSERVATION

epc parentepc tstart tend
1.1.1 1.2.1 2004-11-01 10:33:00.1002004-11-07 11:00:00.000
1.1.2 1.2.1 2004-11-01 10:33:00.1102004-11-07 11:00:00.010
1.2.1 1.3.1 2004-11-01 10:35:00.0012004-11-07 10:59:00.000

Table 6:Sample CONTAINMENT

OBJECTLOCATION(epc, location id, tstart,
tend)

This table preserves the location history of each ob-
ject, including an object’s EPC, location id, and the period
[tstart, tend] during which the object stays in that lo-
cation (Table 7). (UC denotes ‘now’ in the examples.)

epc location id tstart tend
1.1.1 L001 2004-10-30 17:33:00.0002004-11-01 10:35:00.000
1.1.1 L002 2004-11-01 10:35:00.0012004-11-07 11:00:00.000
1.1.1 L003 2004-11-07 11:00:00.0012004-11-08 15:30:00.009
1.1.1 L004 2004-11-08 15:30:00.010 UC

Table 7:Sample OBJECTLOCATION

SENSORLOCATION(sensor epc, location id,
position, tstart, tend)

This table keeps the location history of a sensor, since a
sensor can be deployed at different locations/positions. It
includes the EPC of a sensor, location id, position, and the
period during which the sensor is located in that location.
Hereposition is a symbolic position of a sensor at a lo-
cation, for example, the loading zone of a warehouse. A
location of a sensor at certain time can always be found in
this relation.

TRANSACTIONITEM(transaction id, epc,
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sensor epclocation id position tstart tend
1.255.1 L001 packing 2004-10-01 15:30:00.010UC
1.255.2 L001 loading 2004-10-01 15:30:00.010UC
1.255.3 L003 unloading2004-10-01 15:30:00.010UC
1.255.4 L003 register 2004-10-01 15:30:00.010UC

Table 8:Sample SENSORLOCATION

transactionid epc timestamp
TX00001 1.1.12004-11-08 15:30:00.010
TX00001 1.1.22004-11-08 15:30:00.100
TX00001 1.1.32004-11-08 15:30:00.109

Table 9:Sample TRANSACTIONITEM

timestamp)

This table keeps the items in a transaction. It includes a
transaction id, EPC of the object in the transaction, and the
timestamp when the object’s transaction occurs.

3 Tracking and Monitoring RFID Data

A significant benefit of the temporal modeling is the power
to support complex RFID queries. Most RFID queries are
temporal queries with temporal constraints such as history,
temporal snapshot, or temporal slicing. There are more
complex ones such as temporal joins and temporal aggre-
gates. We summarize these queries as two main categories:
RFID Object TrackingandRFID Object Monitoring. The
former is to track RFID objects including missing objects.
RFID Object Monitoring is to monitor the states of RFID
objects and the RFID system. In the following, we summa-
rize common RFID data tracking and monitoring types, and
propose methods to express such queries based on DRER
data model.

3.1 Methods for RFID Data Tracking

RFID Object Tracking tracks the change history of an ob-
ject’s states and detects missing objects.

RFID Object Tracking

Q1. Find the location history of an object with EPC
value ‘EPC’.

SELECT * FROM OBJECTLOCATION
WHERE epc=’EPC’

Missing RFID Object Detection

There are two scenarios for Missing RFID Object Detec-
tion, the first one isMissing RFID Object Tracking, to lo-
cate when and where an object was lost, knowing the lost
object’s EPC. This means that the object appeared at previ-
ous locations, but not at current location.

Q2. Find when and where object ‘MEPC’ was lost.

SELECT location_id, tstart, tend
FROM OBJECTLOCATION
WHERE epc=’MEPC’ and tstart =(

SELECT MAX(o.tstart)
FROM OBJECTLOCATION o WHERE o.epc=’MEPC’)

The second scenario isPossible Missing RFID Object
Searching, to search if there is any missing object at a cer-
tain location C, knowing that at a previous location L and
timestamp T, all objects were complete. This can be done
by comparing the two sets of objects between location C
and location L.

Q3. Check if there are missing objects at current loca-
tion C, knowing that all objects were complete at previous
location L at time T.

SELECT l.epc FROM OBJECTLOCATION l
WHERE l.location_id = ’L’

AND l.tstart <= ’T’ and l.tend >= ’T’
AND l.epc NOT IN (

SELECT c.epc FROM OBJECTLOCATION c
WHERE c.location_id = ’C’ )

RFID Object Identification

Since every RFID object is uniquely identified by its EPC,
it is easy to identify an object:

Q4. A customer returns a product with EPC ‘XEPC’.
Check if this product was sold from this store (location
‘L003’).

SELECT *
FROM OBJECTLOCATION
WHERE epc=’XEPC’ AND location_id=’L003’

RFID Object Moving Time Inquiry

One common query is to find how long it takes for an object
to move from one location to another.

Q5. How long did it take to supply object ‘OEPC’ from
location S to location E?

SELECT (e.tstart-s.tstart) AS supplying_time
FROM OBJECTLOCATION e, OBJECTLOCATION s
WHERE e.epc = ’OEPC’ AND s.epc=’OEPC’
AND s.location_id =’S’ AND e.locaiton_id =’E’

3.2 Methods for RFID Data Monitoring

RFID Object Monitoring is to monitor the states of RFID
objects and the RFID system. These include snapshot in-
quiry, temporal slicing inquiry, temporal join query, tem-
poral aggregation, and containment examination.

RFID Object Snapshot Query

By specifying a snapshot timestamp, it is easy to monitor
the snapshot information of any RFID objects, including
snapshot locations, containment, observations, or transac-
tions.

Q6. Find the direct container of object ’EPC’ at time T.

SELECT parent_epc
FROM CONTAINMENT
WHERE epc=’EPC’ AND

tstart <= ’T’ AND tend >= ’T’
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RFID Object Temporal Slicing Query
This query retrieves object information during a temporal
interval.

Q7. Find items sold to customers in the last hour.

SELECT epc FROM OBJECTLOCATION
WHERE location_id = ’L04’ AND tend = ’UC’

AND tstart <= sysdate-(1/24)

RFID Object Temporal Join Query

Temporal join query will retrieve information by joining
multiple relations on certain temporal constraint.

Q8. This case (with epc ‘TEPC’) of meat is tainted.
What other cases have ever been put in the same pallet with
it?

SELECT c2.epc
FROM CONTAINMENT c1, CONTAINMENT c2
WHERE c1.parent_epc = c2.parent_epc

AND c1.epc = ’TEPC’ AND overlaps(
c1.tstart, c1.tend, c2.tstart, c2.tend)

whereoverlaps() is a user-defined scalar function to
check if two intervals overlap. User-defined scalar tempo-
ral functions can be defined to simplify temporal queries.

Temporal Aggregation of RFID Data

This query will summarize aggregational information at
certain snapshot or interval.

Q9. Find how many items loaded into the store ‘L003’
on 11/09/2004.

SELECT count(epc)
FROM OBJECTLOCATION
WHERE location_id = ’L003’

AND tstart <= ’2004-11-09 00:00:00.000’
AND tend >= ’2004-11-09 00:00:00.000’

RFID Object Containment Queries

RFID containment queries are queries that retrieve the
containment relationships between RFID objects. These
queries are normally interleaved with other temporal RFID
queries. Two special cases are recursive containment
queries:RFID Object Sibling Search: find all the sibling
objects of a container object, andRFID Object Ancestor
Search: find all the ancestor container objects of an object.
The following shows an example of sibling search (ances-
tor search can be done similarly by switching parent and
child attributes).

Q10. RFID Sibling Object Search. Find all objects con-
tained in object ‘PEPC’.

WITH RECURSIVE all_sub(parentepc, epc) AS
(SELECT parentepc, epc

FROM CONTAINMENT
WHERE parentepc = ’PEPC’
UNION
SELECT a.parentepc, c.epc
FROM all_sub a, CONTAINMENT c
WHERE a.epc = c.parentepc

)
SELECT *

Based on the DRER schema, we can also specify con-
straints and business intelligence queries, such as automatic
shipping notice, low inventory alert, and trend analysis.

The RFID temporal queries can also be expressed
with standard temporal query languages, such as TSQL2
[23], which, however, is not yet supported by commercial
RDBMS.

4 Automatic RFID Data Acquisition and
Transformation

4.1 Data Acquisition from Physical World

Figure 3: Data Flow of RFID Readings [24]

An RFID-enabled system provides automatic data ac-
quisition through RFID readings. The data flow of RFID
readings is shown in Figure 3 [24]. A reader consists of
two blocks: control block and high frequency (HF) inter-
face. The application sends control commands to the con-
trol block of the reader, and then the control block con-
trols the HF interface to read RFID tags. The received
data are sent back to the application through the control
block. There can be two modes for an RFID reader:full
duplex/half duplex mode(or inventory mode), andsequen-
tial mode. In the first mode, when the reader RF field is
turned on, the response of a tag is broadcast. This mode
is recommended for applications that expect multiple tags
detection at once. For the sequential mode, the reader RF is
switched off briefly at regular intervals, and the tag recog-
nizes the gap and responds to the reader.

4.2 Rules-based RFID Data Transformation

In order to effectively track and monitor RFID objects, the
acquired data need to be automatically transformed into
high level semantic data, through: i)Data Filtering. The
observations from readers may contain errors such as dupli-
cates and have to be filtered; ii)Location Transformation.
RFID observations can imply change of locations and busi-
ness movement, and need to be interpreted and represented.
iii) Data Aggregation. There can be semantic relationships
among RFID objects, such as containment relationships.
Such relationships are implicit and have to aggregated ac-
cording to the observation patterns. Transformed data are
represented in DRER model, and stored in RFID data store
(more will be discussed in Section 6).

While such data transformation can be performed at the
application integration level, it poses much complexity on
data integration, and is not adaptable and difficult to scale.
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Next, we propose a rules-based framework for automatic
RFID data transformation.

Figure 4: Rules-based RFID Data Transformation

RFID data streams consist of primitive events and com-
posite events, which can serve as the base for data trans-
formation. Here we formalize a rules-based framework to
automate the transformation, as shown in Figure 4. First,
RFID readers and their operations are defined to follow cer-
tain patterns at the deployment, according to application
models. According to this, users can define active rules
on observation streams to detect events. Primitive events,
such as observations from readers, can lead to actions such
as change of locations. Sequence events consist of a se-
quence of primitive events of the same type, defined by the
order and closeness of intervals. Composite events are a
combination of the above, and can lead to actions such as
aggregation of data. Next we briefly discuss the rules-based
framework for automatic data transformation.

Data Filtering

This will filter data according to predefined constraints with
global and domain information. For example, multiple
readers can generate duplicate readings. To filter this, a fil-
ter will scan data within a sliding window to find if there are
duplicate EPC readings from multiple readers, and delete
the duplicate if it exists. As an example, the following rule
specifies that if readings from readerRx andRy have the
same EPC value withinT, then one of them is dropped.

OBSERVATION(Rx, e, Tx),
OBSERVATION(Ry, e, Ty), Rx <> Ry,
within(Tx, Ty, T)

-> DROP:OBSERVATION(Rx, e, Tx)

Location Transformation

One fundamental transformation is to transform RFID
sensor observations into location changes. For instance,
Reader “R2” is mounted at warehouse departure zone and
will scan objects before their departure. A rule for this
transformation is defined as follows:

OBSERVATION("R2", e, t) ->
UPDATE:OBJECTLOCATION(e,"L002", t, "UC")

The above rule defines that any observation generated
from reader “R2” will change the observed object’s loca-
tion, i.e., delete objecte’s current location by updating the
ending timestamp of current location tot , and insert a new
location “L002” for this object, with starting timestampt ,
and ending timestampUC (Until Changed).

Data Aggregation

Events can be aggregated into semantic data, such as con-
tainment relationships. Associating relationship among ob-
jects has been identified as a difficult issue for RFID appli-
cations [25]. This problem can be solved with our rules-
based approach. For a human intervened environment, ag-
gregation can be done by manually generating a start event
and an end event for the aggregation, which then can be
detected by the rules system. For a fully automatic envi-
ronment, where human intervention may not be possible,
we can configure the order of readings among objects, by
properly deploying readers and the workflow. Then we use
rules to detect such ordering to generate the aggregation
relationship. For instance, when pallets are loaded into a
truck to depart, a sequence of readings on the pallets are
done, followed by (with a distinctive distance) a separate
reading of the truck’s EPC. This sequence of events will
aggregate as a containment relationship between the pal-
lets and the truck, and lead to updates in theCONTAINMENT
table. This can be automated by a rule based on composite
events defined as follows:

seq(s,"r2");OBSERVATION("r2", e, t) ->
INSERT:CONTAINMENT(seq(s, "r2", Tseq),

e,t,"UC")

seq(s,"r2") defines a sequence event from reader
“r2” with maximum adjacent distanceTseq . When a se-
quence is followed by another observation of the same
reader, all the objects will be put as children ofe in the
CONTAINMENTtable.

Based on the predefined rules, an event detector (Fig-
ure 4) monitors the observation streams to detect events,
and automatically triggers actions to generate logic data, as
discussed in Section 4.3.

Thus, to deploy the RFID data management system to
different applications, we only need to declare the rules and
constraints, which significantly reduces code rewriting and
make the system configurable and adaptable.

4.3 Data Generation from Rule Actions

The data transformation rules described above will lead to
actions to generate logic data represented in DRER in the
database. We can categorize them into following scenarios
according to the triggering event types:

– Data generation triggered from reading events. These
include updates on tablesOBSERVATION, OBJECTLO-
CATION, CONTAINMENT, andOBJECT(when an object
first appears).

– Data generation triggered from business transaction
events. These include updates on theTRANSACTION
table.

– Data generation triggered from both reading events
and business transaction events. These include up-
dates onTRANSACTIONITEMtable.

Besides, there are also data generated at RFID deploy-
ment. These include updates onLOCATION table, SEN-
SORtable andSENSORLOCATIONtable. Such updates are
mostly manually updated and are infrequent.
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We can further classify the actions as two types: inser-
tion of new events, and modification of states:

– Insertion of a new event. A new record is inserted
in the corresponding event table with the current
timestamp.

– Insertion of a new state. This will create a new state
record (e.g., a new record inOBJECTLOCATIONta-
ble), with the starting timestamptstart as the cur-
rent timestamp, and ending timestamptend asUC.

– Deletion of a state. A deletion of a state means the
ending of a state. This can be done by changing the
ending timestamptend to the value of the current
timestamp.

– Update of a state. This can be seen as a deletion fol-
lowed by an insertion.

In particular, when a parent container object is updated
with a location change, all its containing objects’ locations
will be updated recursively. (In practice, it may not be pos-
sible to scan tags contained inside a container.)

Figure 1(b) demonstrates the automatic data collection,
data transformation, and data modification process. As ob-
jects move from the system through the four readers (1
to 4), corresponding tables (marked with ‘x’) are updated
to reflect changes of states and occurring of new events.
Reader ‘D’ is a pseudo reader to denote modifications oc-
curred at deployment.

5 Efficient Query Support with Partitioning
With fast reading speed, RFID systems generate large vol-
ume of data. Accumulation of RFID data can lead to slower
queries and updates. Nevertheless, RFID objects normally
have limited active life period, during which the objects are
actively updated, tracked and monitored. For example, in a
supply chain system, an object starts from the time when it
is first tagged and scanned, and ends when it is sold to cus-
tomers. Therefore, we can partition and archive non-active
RFID data, and perform most queries and update opera-
tions on active RFID data. This can achieve better query
performance and also assure efficient updates. We propose
two approaches of archiving for different scenarios: fixed
period partition and dynamic period partition.

Figure 5: Data Archiving with Partitioning

5.1 Fixed Period Partition
Suppose all objects’ behavior is homogeneous and they
have close active life periods, e.g., T. We assume all active

objects are stored in an active partition Pactive. For every T
period, we check the active partition, and move all objects
from the active partition to an archive partition Pi associ-
ated with a partition interval: [Pistart,Piend]. Only active
objects will be kept in Pactive partition for future updates,
as shown in Figure 5 (where solid lines represent active ob-
jects). The process is repeated every T time, and eventually
it leads to a set of history partitions in addition to the active
partition (P1, P2, P3, ..., Pactive).

5.2 Dynamic Period Partition

The fixed period partition works well when the active life
periods are uniform and with limited length. This may not
be true for some RFID applications, where the active life
periods are irregular, or in the case finer partition is needed.
In these cases, we propose to partition data dynamically
according to active object ratio.

We first defineactive object ratio (AOR)as the num-
ber of active objects over the total number of objects in the
active partition. An object is inactive if it finishes its move-
ment cycle, or it is not current any more. We then define
a minimum AORmin below which archiving will be per-
formed.

With the updates of the data in the active partition
Pactive, the AOR will decrease, until it reaches the thresh-
old AORmin. Then, all objects in Pactive will be archived
into partition Pi associated with a partition interval; only
active objects will be kept in Pactive. Then updates will be
continuously performed on active objects in Pactive, until
the AOR reaches AORmin. The process is then repeated.

Both fixed and dynamic partitions can be physical par-
titions, or logical partitions associated with partition num-
bers, which can become part of the search keys. With parti-
tioning, updates are only performed on the active partition,
and most queries are performed on the active partition as
well, thus they are more efficient. For historical queries,
e.g., time slicing and snapshot queries, the search space
can be narrowed down to fewer partitions according to the
partition intervals. Meanwhile, if required, data can also be
quickly vacuumed by removing expired partitions.

6 Siemens RFID Middleware

In the previous sections, we discuss the RFID data model
and the benefit of complex query support, rules-based au-
tomatic data transformation, and partitioning-based stor-
age. All these technologies have to be put together to make
them work. Next we discuss Siemens RFID Middleware,
an RFID data management system that integrates all the
technologies into a robust system. The objectives of the
Siemens RFID Middleware is to provide an integrated solu-
tion for RFID applications, with automatic data acquisition,
filtering and transformation; expressive data modeling and
effective query support; and is adaptable to different appli-
cations with minimum configurations. Next we discuss the
architecture of the system.
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Figure 6: Siemens RFID Middleware

6.1 Siemens RFID Middleware Architecture

The Siemens RFID Middleware consists of the following
components: RFID Readers, Event Managers, and RFID
Data Server. The RFID Data Server includes RFID Data
Manager, RFID Data Store, RFID Data Archive, Product
Data Store, and integration interfaces. In the following, we
discuss each component in the system.

Event Managers

Event Managers are the front end of the system, which
dynamically receive data from readers, preliminarily filter
the data, and forward the data to the RFID Data Server.
Event Managers function in parallel at different clients.
Each Event Manager can connect to multiple readers, and
process the data generated from the readers simultaneously.
An Event Manager includes Reader Adapters, Filters, and
Writers.

Reader Adapter. Reader Adapter is the software com-
ponent to communicate with RFID readers, and provides a
unified interface for RFID middleware to access readings.
A reader adapter can send commands to a reader to control
a reader, such as reading frequency and cycle delay time,
and also receive reading data.

Filter. Filter is the data filtering component to prelimi-
narily screen raw reading data. The filtering functions can
be duplicate removing from a reader, error detection, and
so on. Since a filter in an Event Manager may not have
global information, more advanced data filtering is per-
formed at the Semantic Data Processing Layer in the RFID
Data Manager discussed next.

Writer. Writer will format the data with PML (Physical
Markup Language) [26], the standard language for RFID
data exchange, and send them to different targets as mes-
sages, streams or other formats, through Web Services,
JMS, HTTP response, or TCP/IP data packets.

RFID Data Manager

RFID Data Manager is the key component of RFID Data
Server in an RFID Data Management System. It pro-
vides expressive data modeling, semantic data filtering,
data aggregation, RFID object tracking and monitoring,

and decision-making support. It consists of three lay-
ers: Semantic Data Processing Layer, Query Layer, and
Decision-Making Layer, discussed as follows.

Semantic Data Processing Layer. This layer provides
high level semantic data processing including semantic fil-
tering and automatic data transformation and aggregation.
A rules-based framework is formalized to automate the
transformation.

Query Layer. This layer defines methods for RFID ob-
ject tracking and RFID object monitoring, as discussed in
Section 3.

Decision-making Layer. This layer provides business
intelligence such as automatic shipping notice, low inven-
tory alert, trend analysis, and so on.

RFID Data Store

RFID Data Store provides schemas implemented from
DRER data model, and stores RFID data for RFID object
tracking and monitoring, and decision-making. It also pro-
vides interfaces for data retrieval.

RFID Data Archive

By partitioning, non-active data are archived into history
partitions in RFID Data Archive.

Product Data Store

Besides dynamic data stored in RFID Data Store, there are
static information related to EPC objects, such as product
description, product model, etc. Such information is pre-
served in the Product Data Store. (Stored data can be more
general, such as patients, blood, etc.)

Data Integration

RFID Data Server provides an application integration layer
to integrate the system with other applications. Product-
level information is exchanged through Object Naming
Service Server(ONS) [27]. Besides product level infor-
mation, information at the object level (objects and their
movement histories) can also be shared among different
enterprises, for example, in an XML-based standard for-
mat, so the global history of an object can be combined
and shared to monitor the global processes.
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7 Experiments and Future Work

The prototype of Siemens RFID Middleware is developed
and demonstrated at Siemens Corporate Research.

We have investigated the feasibility and effectiveness of
Siemens RFID Middleware for RFID data management in
health care, to increase healthcare safety and workflow ef-
ficiency. For example, for RFID-enabled healthcare asset
management, major healthcare equipments, such as beds,
wheelchairs, and medical devices, are RFID-tagged, so
healthcare workers can locate any asset in real-time. This
is extremely important for emergency room. RFID-enabled
healthcare can not only achieve significant time saving, but
also increases medical safety. We demonstrate that our sys-
tem can effectively model healthcare asset movement, and
provide real-time tracking of every asset item.

Currently, we are in the process of working with a hos-
pital on implementing an RFID-enabled healthcare asset
management based on the Siemens RFID Middleware.

We are also working with Siemens RFID Research Lab
and Siemens MOBY[28] to provide streamlined RFID en-
abled solutions for warehouse/logistics, product assembly
lines, transportation, and healthcare.

8 Related Work

RFID Data Modeling and RFID Platforms

RFID technology has emerged for years and poses new
challenges for data management [11, 29, 30, 31]. How-
ever, little research has been done on how to effectively data
modeling RFID data. Harrison et al [22, 32] summarize the
data characteristics of RFID data, and provide some refer-
ence relations to represent the data. In their model, RFID
data are modeled as events, thus the state history and the
temporal semantics of business processes are implicit. This
data model is not effective on supporting complex queries
such as RFID object tracking and monitoring. A query of-
ten needs to be divided into numerous steps [22], which is
indirect and inefficient, and not nature for users.

EPCglobal [33], the current EPC standard group, de-
fines the networks for RFID data and product data [12, 21],
but RFID data modeling is not a task in its working group.

Recently, major IT vendors are providing sophisticated
RFID platforms, including the Sun EPC Network [14],
SAP Auto-ID Infrastructure [13], Oracle Sensor Edge
Server [15], IBM WebSphere RFID Premises Server [16],
Sybase RFID Solutions [17], and Microsoft RFID Middle-
ware [34]. UCLA’s WinRFID Middleware [35] is another
RFID middleware based on web services. These platforms
serve as the bridges between the RFID physical world and
the rest of the software infrastructure. RFID data are ac-
quired, filtered and normalized through the platforms, and
then dispatched to applications. Thus the high level RFID
data modeling is up to applications.

There are also much work on using RFID in ubiquitous
computing [19, 18]. R̈omer et al [18] emphasize the im-
portance of location management, but no systematic model
is proposed. Query processing in sensor data networks has

been extensively studied in the past [36, 37], with a focus
on solving problems under the power constraint of sensor
networks.

Temporal Data Modeling

There has been much interesting work on ER-based [38]
temporal modeling of information systems at the concep-
tual level. For instance, ER models have been supported
in commercial products for database schema designs, and
more than 10 temporal enhanced ER models have been
proposed in the research community [39]. As discussed
in the survey by Gregersen and Jensen [39], there are two
major approaches of extensions to ER model for temporal
support, devising new notational shorthand, or altering the
semantics of the current ER model constructs. These ap-
proaches assume general temporal information, i.e., both
entities and relationships, together with their attributes, are
dynamic. They need significant extension of current ER
data model, and the implementation can be also compli-
cated. For the special case of RFID data, it has its own
unique characteristics, and the modeling can be much sim-
plified. The temporal data model proposed in this paper
naturally fits with RFID data, and requires minimum ex-
tensions to ER data model.

9 Conclusion

RFID technology is significantly changing the current busi-
ness applications. One of the major challenges for RFID
technology is RFID data management [11, 29, 30]. In this
paper, we have identified several key issues in managing
RFID data, including data modeling, automatic data trans-
formation and enrichment, effective support of queries for
tracking and monitoring, scalable data archiving, and con-
venient application integration.

We propose a general and expressive temporal-oriented
data model – Dynamic Relationship ER Data Model – for
RFID data. This data model exploits the common charac-
teristics of RFID data, and integrates business processes
into the data model itself. The data model is shown to
be quite powerful on supporting RFID data tracking and
monitoring, which is essential for RFID applications. Our
partitioning-based storage assures scalable data archiving
and efficient updates and queries. The rules-based frame-
work enables automatic RFID data filtering, transformation
and aggregation, to generate high level semantic data. The
Siemens RFID Middleware brings all these technologies
together into an integrated RFID data management system.
The system is general and can be adapted into different
RFID applications, thus substantially reduces the cost of
managing and integrating RFID data into business applica-
tions.

References

[1] Building the Digital Supply Chain: An Intel Per-
spective. http://www.intel.com/business/bss /indus-
try/retail/digsuppchain.pdf, Janurary 2005.

1138



[2] Walmart Supplier Information: Radio Frequency
Identification Usage. http://www.walmartstores.com,
2005.

[3] World’s Third Largest Retailer Com-
pletes Warehouse RFID Implementation.
http://www.informationweek.com/story/showArticle.
jhtml?articleID=57702741, January 2005.

[4] Tesco Pushes on with Full-scale RFID Roll-
out. http://www.computing.co.uk/news/1160636, Ja-
nurary 2005.

[5] DOD RFID Official Website. http://www.dodrfid.org.
[6] The METRO Group Future Store Initiative.

http://www.future-store.org.
[7] Combating Conterfeit Drugs: A Report

of the Food and Drug Administration.
http://www.fda.gov/oc/initiatives/counterfeit/report
02 04.html, February 2004.

[8] Homeland Security to Test RFID.
http://www.rfidjournal.com/article/articleview
/1360/1/1/, January 2005.

[9] Siemens to Pilot RFID Bracelets for Health Care.
http://www.infoworld.com/article/04/07/23/HNrfid
implants1.html, July 2004.

[10] EPC Tag Data Standards Version 1.1. Technical re-
port, EPCGlobal Inc, April 2004.

[11] S. S. Chawathe, V. Krishnamurthy, S. Ramachan-
drany, and S. Sarma. Managing RFID Data. InVLDB,
pages 1189–1195, 2004.

[12] S. Clark, K. Traub, D. Anarkat, and T. Osinski. Auto-
ID Savant Specification 1.0. Technical report, Auto-
ID Center, September 2003.

[13] C. Bornhoevd, T. Lin, S. Haller, and J. Schaper.
Integrating Automatic Data Acquisition with Busi-
ness Processes - Experiences with SAP’s Auto-ID In-
frastructure. InVLDB, pages 1182–1188, 2004.

[14] A. Gupta and M. Srivastava. Developing Auto-
ID Solutions using Sun Java System RFID Soft-
ware. http://java.sun.com/developer /technicalArti-
cles/Ecommerce/rfid/sjsrfid/RFID.html, Oct 2004.

[15] Oracle Sensor Edge Server. http://www.oracle.com
/technology/products/iaswe/edgeserver.

[16] WebSphere RFID Premises Server. http://www-
306.ibm.com/software/pervasive/wsrfid premises
server/, December 2004.

[17] Sybase RFID Solutions. http://www.sybase.com/rfid,
2005.
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