
Warehousing and Analyzing Massive RFID Data Sets∗

Hector Gonzalez Jiawei Han Xiaolei Li Diego Klabjan
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{hagonzal, hanj, xli10, klabjan}@uiuc.edu

Abstract

Radio Frequency Identification (RFID) applications are
set to play an essential role in object tracking and supply
chain management systems. In the near future, it is expected
that every major retailer will use RFID systems to track the
movement of products from suppliers to warehouses, store
backrooms and eventually to points of sale. The volume of
information generated by such systems can be enormous as
each individual item (a pallet, a case, or an SKU) will leave
a trail of data as it moves through different locations. As a
departure from the traditional data cube, we propose a new
warehousing model that preserves object transitions while
providing significant compression and path-dependent ag-
gregates, based on the following observations: (1) items
usually move together in large groups through early stages
in the system (e.g., distribution centers) and only in later
stages (e.g., stores) do they move in smaller groups, and
(2) although RFID data is registered at the primitive level,
data analysis usually takes place at a higher abstraction
level. Techniques for summarizing and indexing data, and
methods for processing a variety of queries based on this
framework are developed in this study. Our experiments
demonstrate the utility and feasibility of our design, data
structure, and algorithms.

1 Introduction

Radio Frequency Identification (RFID) is a technology
that allows a sensor (RFID reader) to read, from a distance
and without line of sight, a unique identifier that is provided
(via a radio signal) by an “inexpensive” tag attached to an
item. RFID offers a possible alternative to bar code identifi-
cation systems and it facilitates applications like item track-
ing and inventory management in the supply chain. The
technology holds the promise to streamline supply chain

∗ The work was supported in part by the U.S. National Science Founda-
tion NSF IIS-02-09199/IIS-03-08215. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agencies.

management, facilitate routing and distribution of products,
and reduce costs by improving efficiency.

Large retailers like Walmart, Target, and Albertsons have
already begun implementing RFID systems in their ware-
houses and distribution centers, and are requiring their sup-
pliers to tag products at the pallet and case levels. Individual
tag prices are expected to fall from around 25 cents per unit
to 5 cents per unit by 2007. At that price level, we can ex-
pect tags to be placed at the individual item level for many
products. The main challenge then becomes how can com-
panies handle and interpret the enormous volume of data
that an RFID application will generate. Venture Develop-
ment Corporation [11], a research firm, predicts that when
tags are used at the item level, Walmart will generate around
7 terabytes of data every day. Database vendors like Oracle,
IBM, Teradata, and some startups are starting to provide
solutions to integrate RFID information into enterprise data
warehouses.

Example Suppose a retailer with 3,000 stores sells
10,000 items a day per store. Assume that we
record each item movement with a tuple of the form:
(EPC, location, time), where EPC is an Electronic Prod-
uct Code which uniquely identifies each item1. If each
item leaves only 10 traces before leaving the store by go-
ing through different locations, this application will gener-
ate at least 300 million tuples per day. A manager may ask
queries on the duration of paths like (Q1): “List the average
shelf life of dairy products in 2003 by manufacturer”, or on
the structure of the paths like (Q2): “What is the average
time that it took coffee-makers to move from the warehouse
to the shelf and finally to the checkout counter in January
of 2004?” New data structures and algorithms need to be
developed that may provide fast responses to such queries
even in the presence of terabyte-sized data.

Such enormous amount of low-level data and flexible
high-level queries pose great challenges to traditional rela-
tional and data warehouse technologies since the processing
may involve retrieval and reasoning over a large number of

1We will use the terms EPC and RFID tag interchangeably throughout
the paper

1

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

inter-related tuples through different stages of object move-
ments. No matter how the objects are sorted and clustered,
it is difficult to support various kinds of high-level queries in
a uniform and efficient way. A nontrivial number of queries
may even require a full scan of the entire RFID database.

Model Proposal and Justification
In this paper we propose a new RFID data warehouse

model to compress and aggregate RFID data in an organized
way such that a wide range of queries can be answered effi-
ciently. Our design is based on the following key observa-
tions.

First, we need to eliminate the redundancy present
in RFID data. Each reader provides tuples of the
form (EPC, location, time) at fixed time intervals.
When an item stays at the same location, for a pe-
riod of time, multiple tuples will be generated. We
can group these tuples into a single one of the form
(EPC, location, time in, time out). For example, if a
supermarket has readers on each shelf that scan the items
every minute, and items stay on the shelf on average for 1
day, we get a 1,440 to 1 reduction in size without loss of
information.

Second, items tend to move and stay together through
different locations. For example, a pallet with 500
cases of CDs may arrive at the warehouse; from there
cases of 50 CDs may move to the shelf; and from
there packs of 5 CDs may move to the checkout
counter. We can register a single stay tuple of the form
(EPC list, location, time in, time out) for the CDs that
arrive in the same pallet and stay together in the warehouse,
and thus generate an 80% space saving. At this point we
can also perform data cleaning to eliminate possible incon-
sistencies due to failed scans by the RFID readers. We can,
for example, use the assumption that many RFID objects
stay or move together, especially at the early stage of dis-
tribution, or use the historically most likely path for a given
item, to infer or interpolate the missing locations.

An alternative compression mechanism is to store a sin-
gle transition record for the 50 CDs that move together from
the warehouse to the shelf, that is to group transitions and
not stays. The problem with transition compression is that
it makes it difficult to answer queries about items at a given
location or going through a series of locations. For ex-
ample, if we get the query “What is the average time that
CDs stay at the shelf?” we can directly get the informa-
tion from the stay records with location = shelf , but if
we have transition records, we need to find all the tran-
sition records with origin = shelf and the ones with
destination = shelf , join them on EPC, and compute
departure time − arrival time.

Third, we can gain further compression by reducing the
size of the EPC lists in the stay records by grouping items
that move to the same locations. For example, let us say

we have a stay record for the 50 CDs that stayed together
at the warehouse, and that the CDs moved in two groups to
shelf and truck locations. We can replace the list of 50 EPCs
in the stay record for just two generalized identifiers (gids)
which in turn point to the concrete EPCs. In this exam-
ple we will store a total of 50 EPCs, plus two gids, instead
of 100 EPCs (50 in the warehouse, 25 in the shelf, 25 in
the truck). In addition to the compression benefits, we can
gain query processing speedup by assigning path-dependent
names to the gids. In the CDs example we could name the
gid for the warehouse 1, and the gid for the shelf 1.1 and
truck 1.2. If we get the query “What is the average time to
go from the warehouse to the shelf for CDs?” instead of in-
tersecting the EPC lists for the stay records at each location
we can directly look at the gid name and determine if the
EPCs are linked.

Fourth, most queries are likely to be at a high level of
abstraction, and will only be interested in the low-level in-
dividual items if they are associated with some interesting
patterns discovered at a high level. For example, query (Q1)
asks about dairy products by manufacturer. It is possible
after seeing the results, that the user may ask subsequent
queries and drill down to individual items. We can gain
significant compression by creating the stay records not at
the raw level but at a minimal level of abstraction shared
by most applications, while keeping pointers to the RFID
tags. This allows us to operate on a much smaller data set,
fetching the original data only when absolutely necessary.

The rest of the paper is organized as follows. Section
2 presents the structure of the input RFID data. Section 3
presents data compression and generalization methods im-
portant for the design of the RFID warehouse. Section 4
introduces algorithms for constructing the RFID warhouse.
Section 5 develops methods for efficient processing of a va-
riety of RFID queries. Section 6 reports the experimental
and performance results. We discuss the related issues in
Section 7 and conclude our study in Section 8.

2 RFID Data
Data generated from an RFID application can

be seen as a stream of RFID tuples of the form
(EPC, location, time), where EPC is the unique identifier
read by an RFID reader, location is the place where the
RFID reader scanned the item, and time is the time when
the reading took place. Tuples are usually stored according
to a time sequence. A single EPC may have multiple
readings at the same location, each reading is generated by
the RFID reader scanning for tags at fixed time intervals
or on a continuous basis. Table 1 is an example of a raw
RFID database where a symbol starting with r represents
an RFID tag, l a location, and t a time. The total number of
records in this example is 188.

In order to reduce the large amount of redundancy in the

2

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Raw RFID Records
(r1, l1, t1) (r2, l1, t1) (r3, l1, t1) (r4, l1, t1) (r5, l1, t1)
(r6, l1, t1) (r7, l1, t1) . . . (r1, l1, t9) (r2, l1, t9) (r3, l1, t9)
(r4, l1, t9) . . . (r1, l1, t10) (r2, l1, t10) (r3, l1, t10) (r4, l1, t10)
(r7, l4, t10) . . . (r7, l4, t19) . . . (r1, l3, t21) (r2, l3, t21)
(r4, l3, t21) (r5, l3, t21) . . . (r6, l6, t35) . . . (r2, l5, t40)
(r3, l5, t40) (r6, l6, t40) . . . (r2, l5, t60) (r3, l5, t60)

Table 1. Raw RFID Records

raw data, data cleaning should be performed. The output
after data cleaning is a set of clean stay records of the form
(EPC, location, time in, time out) where time in is the
time when the object enters the location, and time out is the
time when the object leaves the location.

Data cleaning of stay records can be accomplished by
sorting the raw data on EPC and time, and generating
time in and time out for each location by merging consecu-
tive records for the same object staying at the same location.
Table 2 presents the RFID database of Table 1 after clean-
ing. It has been reduced from 188 records to just 17 records.

EPC Stay(EPC, location, time in, time out)

r1 (r1, l1, t1, t10)(r1, l3, t20, t30)
r2 (r2, l1, t1, t10)(r2, l3, t20, t30)(r2, l5, t40, t60)
r3 (r3, l1, t1, t10)(r3, l3, t20, t30)(r3, l5, t40, t60)
r4 (r4, 1, t1, t10)
r5 (r5, l2, t1, t8)(r5, l3, t20, t30)(r5, l5, t40, t60)
r6 (r6, l2, t1, t8)(r6, l3, t20, t30)(r6, l6, t35, t50)
r7 (r7, l2, t1, t8)(r7, l4, t10, t20)

Table 2. A Cleansed RFID Database

3 Architecture of the RFID Warehouse

Before we describe our proposed architecture for ware-
housing RFID data, it is important to describe why a tradi-
tional data cube model would fail on such data. Suppose we
view the cleansed RFID data as the fact table with dimen-
sions (EPC, location, time in, time out : measure).
The data cube will compute all possible group-bys on this
fact table by aggregating records that share the same values
(or any *) at all possible combinations of dimensions. If we
use count as measure, we can get for example the number
of items that stayed at a given location for a given month.
The problem with this form of aggregation is that it does
not consider links between the records. For example, if we
want to get the number of items of type “dairy product” that
traveled from the distribution center in Chicago to stores in
Urbana, we cannot get this information. We have the count
of “dairy products” for each location but we do not know
how many of those items went from the first location to the
second. We need a more powerful model capable of aggre-
gating data while preserving its path-like structure.

We propose an RFID warehouse architecture that con-
tains a fact table, stay, composed of cleansed RFID records;
an information table, info, that stores path-independent in-
formation for each item, i.e., SKU information that is con-
stant regardless of the location of the item such as manu-
facturer, lot number, color, etc.; and a map table that links
together different records in the fact table that form a path.
We call the stay, info, and map tables aggregated at a given
abstraction level an RFID-Cuboid.

The main difference between the RFID warehouse and a
traditional warehouse is the presence of the map table link-
ing records from the fact table (stay) in order to preserve the
original structure of the data.

The computation of RFID-Cuboids is more complex
than that of regular cuboids as we will need to aggregate the
data while preserving the structure of the paths at different
abstraction levels.

From the data storage and query processing point of
view the RFID warehouse can be viewed as a multi-level
database. The raw RFID repository resides at the lowest
level, on its top are the cleansed RFID database, the min-
imum abstraction level RFID-Cuboids and a sparse subset
of the full cuboid lattice composed of frequently queried
(popular) RFID-Cuboids.

3.1 Key ideas of RFID data compression

Even with the removal of data redundancy from RFID
raw data, the cleansed RFID database is usually still enor-
mous. Here we explore several general ideas for construct-
ing a highly compact RFID data warehouse.

Taking advantage of bulky object movements
Since a large number of items travel and stay together

through several stages, it is important to represent such
a collective movement by a single record no matter how
many items were originally collected. As an example, if
1,000 boxes of milk stayed in location locA between time
t1 (time in) and t2 (time out), it would be advantageous if
only one record is registered in the database rather than
1,000 individual RFID records. The record would have
the form: (gid, prod, locA, t1, t2, 1000), where 1,000 is the
count, prod is the product id, and gid is a generalized id
which will not point to the 1,000 original EPCs but instead
point to the set of new gids which the current set of objects
move to. For example, if this current set of objects were
split into 10 partitions, each moving to one distinct loca-
tion, gid will point to 10 distinct new gids, each represent-
ing a record. The process iterates until the end of the object
movement where the concrete EPCs will be registered. By
doing so, no information is lost but the number of records
to store such information is substantially reduced.

Taking advantage of data generalization

3

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Since many users are only interested in data at a rela-
tively high abstraction level, data compression can be ex-
plored to group, merge, and compress data records. For
example, if the minimal granularity of time is hour, then
objects moving within the same hour can be seen as mov-
ing together and be merged into one movement. Similarly,
if the granularity of the location is shelf, objects moving to
the different layers of a shelf can be seen as moving to the
same shelf and be merged into one. Similar generalization
can be performed for products (e.g., merging different sized
milk packages) and other data as well.

Taking advantage of the merge and/or collapse of path
segments

In many analysis tasks, certain path segments can be ig-
nored or merged for simplicity of analysis. For example,
some non-essential object movements (e.g., from one shelf
to another in a store) can be completely ignored in certain
data analysis. Some path segments can be merged without
affecting the analysis results. For store managers, merging
all the movements before the object reaches the store could
be desirable. Such merging and collapsing of path segments
may substantially reduce the total size of the data and speed-
up the analysis process.

3.2 RFID-CUBOID

With the data compression principles in mind, we pro-
pose, the RFID-Cuboid, a data structure, for storing aggre-
gated data in the RFID warehouse. Our design ensures that
the data are disk-resident, summarizing the contents of a
cleansed RFID database in a compact yet complete manner
while allowing efficient execution of both OLAP and tag-
specific queries.

The RFID-Cuboid consists of three tables: (1) Info,
which stores product information for each RFID tag, (2)
Stay, which stores information on items that stay together
at a location, and (3) Map, which stores path information
necessary to link multiple stay records.

Information Table

The information table stores path-independent dimen-
sions such as product name, manufacturer, product price,
product category, etc. Each dimension can have an asso-
ciated concept hierarchy. All traditional OLAP operations
can be performed on these dimensions in conjunction with
various RFID-specific analysis. For example, one could
drill-down on the product category dimension from “cloth-
ing” to “shirts” and retrieve shipment information only on
shirts.

Each entry in Info is a record of the form:
〈(EPC list), (d1, . . . , dm) : (m1, . . . , mi)〉, where the
code list contains a set of items that share the same values
for dimensions d1, . . . , dm, and m1, . . . , mi are measures
of the given items, e.g., price.

Stay Table

As mentioned in the introduction, items tend to move
and stay together through different locations. Compress-
ing multiple items that stay together at a single location is
vital in order to reduce the enormous size of the cleansed
RFID database. In real applications items tend to move in
large groups. At a distribution center there may be tens of
pallets staying together, and then they are broken into in-
dividual pallets at the warehouse level. Even if products
finally move at the individual item level from a shelf to the
checkout counter, our stay compression will save space for
all previous steps taken by the item.

Each entry in stay is a record of the form:
〈(gids, location, time in, time out) : (m1, . . . ,mk)〉,
where gids is a set of generalized record ids each pointing
to a list of RFID tags or lower level gids, location is the
location where the items stayed together, time in is the
time when the items entered the location, and time out
the time when they left. If the items did not leave the lo-
cation, time out is NULL. m1, . . . ,mn are the measures
recorded for the stay, e.g., count, average time at location,
and the maximal time at location.

Table 3 presents the stay table for the cleansed data from
Table 2. We have now gone from 188 records in the raw
data, to 17 in the cleansed data, and then to 7 in the com-
pressed data.

gid loc t1 t2 count measure
0.0 l1 t1 t10 4 9
0.1 l2 t1 t8 3 7
0.0.0 l3 t20 t30 3 9
0.1.0 l3 t20 t30 2 19
0.1.1 l4 t10 t20 1 19
0.0.0.0,0.1.0.0 l5 t40 t60 3 19
0.1.0.1 l6 t35 t50 1 14

Table 3. Stay Table

Map Table

The map table is an efficient structure that allows query
processing to link together stages that belong to the same
path in order to perform structure-aware analysis, which
could not be answered by a traditional data warehouse.
There are two main reasons for using a map table instead
of recording the complete EPC lists at each stage: (1) data
compression, and (2) query processing efficiency.

First, we do not want to record each RFID tag on the EPC
list for every stay record it participated in. For example, if
we assume that 10000 items move in the system in groups of
10000, 1000, 100, and 10 through 4 stages, instead of using
40,000 units of storage for the EPCs in the stay records, we

4

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

use only 1,111 units 2 (1000 for the last stage, 100, 10, and
1 for the ones before).

The second and the more important reason for having
such a map table is the efficiency in query processing. Sup-
pose each map entry were given a path-dependent label.
To compute, for example, the average duration for milk to
move from the distribution center (D), to the store back-
room (B), and finally to the shelf (S), we need to locate
the stay records for milk at each stage. To get three sets of
records D, B, and S, one has to intersect the EPC lists of
the records in D with those in B and S to get the paths.
By using the map, the EPC lists can be orders of magnitude
shorter and thus reduce IO costs.

The map table contains mappings from higher level gids
to lower level ones or EPCs. Each entry in map is a record
of the form: 〈gid, (gid1, . . . , gidn)〉, meaning that, gid is
composed of all the EPCs pointed to by gid1, . . . , gidn.
The lowest level gids will point directly to individual items.

In order to facilitate query processing we will assign
path-dependent labels to high level gids. The label will con-
tain one identifier per location traveled by the items in the
gid.

3.3 Hierarchy of RFID-Cuboids

Each dimension in the stay and info tables has an associ-
ated concept hierarchy. A concept hierarchy is a partial or-
der of mappings from lower levels of abstraction to higher
ones. The lowest corresponds to the values in the raw RFID
data stream itself, and the associated per item information,
which could be at the Stock Keeping Unit (SKU) level. The
highest is ∗ which represents any value of the dimension.

In order to provide fast response to queries specified at
various levels of abstraction, it is important to pre-compute
some RFID-Cuboids at different levels of the concept hi-
erarchies for the dimensions of the info and stay tables.
It is obviously too expensive to compute all the possible
generalizations, and partial materialization is a preferred
choice. This problem is analogous to determining which set
of cuboids in a data cube to materialize in order to answer
OLAP queries efficiently given the limitations on storage
space and precomputation time. This issue has been studied
extensively in the data cube research [1, 6], and the princi-
ples are generally applicable to the selective materialization
of RFID-Cuboids.

In our design, we suggest to compute a set of
RFID-Cuboids at the minimal interesting level at which
users will be interested in inquiring the database, and a
small set of higher level structures that are frequently re-
quested and that can be used to quickly compute non-
materialized RFID-Cuboids.

2This figure does not include the size of the map itself which should
use 12,221 units of storage, still much smaller than the full EPC lists

An RFID-Cuboid residing at the minimal interesting
level will be computed directly from the cleansed RFID
database and will be the lowest cuboid that can be queried
unless one has to dig directly into the cleansed data in some
very special cases.

4 Construction of an RFID Warehouse

In this section, we study the construction of the RFID
warehouse from the cleansed RFID database.

In order to construct the RFID-Cuboid, as described in
the paper, we need a compact data structure that allows us
to do the following efficiently: (1) assign path-dependent
labels to the gids, (2) minimize the number of output stay
records while computing aggregates that preserve the path-
like nature of the data, and (3) identify path segments that
can be collapsed. We argue that using a tree-like structure to
represent the different paths in the database is an ideal solu-
tion, where each node in the tree will represent a path stage;
all common path prefixes in the database will share the same
branch in the tree. Using the tree we can traverse the nodes
in the breath-first fashion while assigning path-dependent
labels. We can quickly determine the minimum number
of output stay records by aggregating the measures of all
the items that share the same branch in the tree. And we
can collapse path segments by simply merging parent/child
nodes that correspond to the same location. Additionally,
the tree can be constructed by doing a single scan of the
cleansed RFID database, and it can be discarded after we
have materialized the output info, stay, and map tables.

Algorithm 1 summarizes the method for constructing an
RFID-Cuboid from the cleansed RFID database. It takes as
input the clean stay records S, the info records I describing
each item, and the level of abstraction for each dimension L.
The output of the algorithm is an RFID-Cuboid represented
by the stay, info, and map tables aggregated at the desired
abstraction level.

The algorithm first aggregates the information table to
the level of abstraction specified by L. Then we call Build-
PathTree (Algorithm 2) to construct a prefix tree for the
paths in the cleansed database. Using the tree we col-
lapse consecutive nodes with the same location, generate
the path-dependent gids, create a list of distinct measures at
each node, and finally for each node we generate the output
stay records.

4.1 Construction of Higher Level RFID-Cuboids
from Lower Level Ones

Once we have constructed the minimum abstraction level
RFID-Cuboid, it is possible to gain efficiency by construct-
ing higher level RFID-Cuboids starting from the existing
RFID-Cuboid instead of directly from the cleansed RFID

5

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

data. This can be accomplished by running Algorithm 1
with the stay and info tables of the lower level RFID-Cuboid
as input, and using the map table of the input RFID-Cuboid
to expand each gid to the EPCs it points to. The benefit of
such approach is that the input stay and info tables can be
significantly smaller than the cleansed tables, thus greatly
gaining in space and time efficiency.

Algorithm 1 BuildCuboid
Input: Stay records S, Information records I , aggregation
level L
Output: RFID-Cuboid
Method:

1: I ′ = aggregate I to L;
2: path tree = BuildPathTree (S, L);
3: Merge consecutive nodes with the same location in the

path tree;
4: Traverse path tree in the breath-first order and assign

gid to each node (gid = parent.gid + ‘.’ + unique id),
where the parent/children gid relation in the path tree
defines the output MAP;

5: Compute aggregate measures for each node, one per
group of items with the same information record and
in the same leaf;

6: Create S′ by traversing path tree in the breath-first or-
der, and generating stay records for each node (Multiple
nodes can contribute to the same stay record);

7: Output MAP, S′, and I ′

Observation. Given a cleansed stay and info input tables,
the RFID-Cuboid structure has the following properties:

1. (Construction cost) The RFID-Cuboid can be con-
structed by doing a single sequential scan on the
cleansed stay table.

2. (Completeness) The RFID cuboid contains sufficient
information to reconstruct the original RFID database
aggregated at abstraction level L.

3. (Compactness) The number of records in the output
stay and info tables is no larger than the number of
records in the input stay and info tables respectively.

Rationale. The first property has been shown in the
RFID-Cuboid construction algorithm. The complete-
ness property can be proved by using the map table to
expand the gids for each stay record to get the origi-
nal data. The compactness property is proved noticing
that Algorithm 1 emits at most one output record per
distinct measure per node, and the number of distinct
measures in a node is limited by the number of input
stay records. The size of the output info table, by def-
inition of the group-by operation is bound by the size
of the input info table.

Algorithm 2 BuildPathTree
Input: Stay S, aggregation level L
Output: path tree
Method:

1: root = new node;
2: for each record s in S do
3: s′ = aggregate s to level L;
4: parent = lookup node for s′.rfid;
5: if parent == NULL then
6: parent = root;
7: end if
8: node = lookup s′.rfid in parent’s children;
9: if node == NULL then

10: node = new node;
11: node.loc = s.loc;
12: node.t1 = s.t1;
13: node.t2 = s.t2;
14: add node to parent’s children;
15: end if
16: node.measure list += 〈s′.gid, s′.measure〉;
17: end for
18: return root

5 Query Processing

In this section we discuss the implementation of the basic
OLAP operations, i.e., drill-down, roll-up, slice, and dice,
applied to the RFID data warehouse, and introduce a new
operation, Path Selection, relevant to the paths traveled by
items.

Given the very large size and high dimensionality of the
RFID warehouse we can only materialize a small fraction
of the total number of RFID-Cuboids. We will compute the
RFID-Cuboid that resides at the minimum abstraction layer
that is interesting to users, and those RFID-Cuboids that
are frequently requested. Initially, the warehouse designer
may decide to materialize a subset of RFID-Cuboids that
are interesting to the users, and as the query log is built, we
can perform frequency counting to determine frequently re-
quested RFID-Cuboids that should be pre-computed. When
a roll-up or drill-down operation requires an RFID-Cuboid
that has not yet been materialized, it would have to be com-
puted on the fly from an existing RFID-Cuboid that is close
to the required one but at a lower abstraction level.

The slice and dice operations can be implemented quite
efficiently by using relational query execution and opti-
mization techniques. An example of the dice operation
could be: “Give me the average time that milk stays at the
shelf”. This query can be answered by the relational expres-
sion:
σstay.location=′shelf ′,info.product=′milk′(stay ��gid info).

Path Selection

6

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Path queries, which ask about information related to the
structure of object traversal paths, are unique to the RFID
warehouse since the concept of object movements is not
modeled in traditional data warehouses. It is essential to al-
low users to inquire about an aggregate measure computed
based on a predefined sequence of locations (path). One
such example could be: “What is the average time for milk
to go from farms to stores in Illinois?”.

Queries on the paths traveled by items are fundamental
to many RFID applications and will be the building block
on top of which more complex data mining operators can
be implemented. We will illustrate this point with a real
example. The United States government is currently in the
process of requiring the containers arriving into the coun-
try, by ship, to carry an RFID tag. The information can be
used to determine if the path traveled by a given container
has deviated from its historic path. This application may
need to first execute a path-selection query across different
time periods, and then use outlier detection and clustering
to analyze the relevant paths.

More formally, a path selection query is of the form:

q ← 〈σcinfo, (σc1stage1, . . . , σck
stagek)〉,

where σcinfo means the selection on the info table based
on condition c, and σcistagei means the selection based
on condition ci on the stay table. The result of a path
selection query is a set of paths whose stages match the
stage conditions in the correct order (possibly with gaps),
and whose items match the condition c. The query ex-
pression for the example path query presented above is
c ← 〈product = “milk”〉, c1 ← 〈location = “farm”〉,
and c2 ← 〈location = “store”〉. We can compute aggre-
gate measures on the results of a path selection query, e.g.,
for the example query the aggregate measure would be the
average time.

Algorithm 3 illustrates the process of selecting the gids
matching a given query. We first select the gids for
the stay records that match the conditions for the ini-
tial and final stages of the query expression. For ex-
ample, gstart may look like 〈1.2, 8.3.1, 3.4〉 and gend

may look like 〈1.2.4.3, 4.3, 3.4.3〉. We then compute the
pairs of gids from gstart that are a prefix of a gid in
gend. Continuing with the example we get the pairs
〈(1.2, 1.2.4.3), (3.4, 3.4.3)〉. For each pair we then retrieve
all the stay records. The pair (1.2, 1.2.4.3) would require
us to retrieve stay records that include gids 1.2, 1.2.4,
and 1.2.4.3. Finally, we verify that each of these records
matches the selection conditions for each stagei and for
info, and add those paths to the answer set.

If we have statistics on query selectivity, it may be pos-
sible to find a better optimization query execution plan than
that presented in Algorithm 3. If we have a sequence of

stages (stage1, . . . , stagek), we could retrieve the records
for the most selective stages, in addition to retrieving the
stay records for stage1 and stagek, in order to further prune
the search space.

Algorithm 3 PathSelection
Input: q ← 〈σcinfo, (σc1stage1, . . . , σck

stagek)〉, RFID
warehouse.
Output: the paths that match query conditions, q.
Method:

1: gstart = select gids of stay records matching the condi-
tion at stage1;

2: gend = select gids of stay records matching the condi-
tion at stagek and that for info;

3: for every pair of gids (s, e) in gstart, gend such that s is
a prefix of e do

4: path = retrieve stay records for all gids from s to e;
5: if the stay records in path match conditions for info

and for the remaining stages then
6: answer = answer + path;
7: end if
8: end for
9: return answer

6 Performance Study

In this section, we perform a thorough analysis of our
model and algorithms. All experiments were implemented
using C++ and were conducted on an Intel Xeon 2.5GHz
(512KB L2 cache) system with 3GB of RAM. The system
ran Red Hat Linux with the 2.4.21 kernel and gcc 3.2.3.

6.1 Data Synthesis

The RFID databases in our experiments were generated
using a tree model for object movements. Each node in the
tree represents a set of items in a location, and an edge rep-
resents a movement of objects between locations. We as-
sumed that items at locations near the root of the tree move
in larger groups, while items near the leaves move in smaller
groups. The size of the groups at each level of the tree de-
fine the bulkiness, B = (s1, s2, . . . , sk), where si is the
number of objects that stay and move together at level i of
the tree. By making si ≥ sj for i > j we create the effect
of items moving in larger groups near the factory and dis-
tribution centers, and smaller groups at the store level. We
generated the databases for the experiments by randomly
constructing a set of trees with a given level of Bulkiness,
and generating the cleansed RFID records corresponding to
the item movements indicated by the edges in the tree.

As a notational convenience, we use the following sym-
bols to denote certain dataset parameters.

7

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

B = (s1, . . . , sk) Path Bulkiness
k Average path length
P Number of products
N Number of cleansed RFID records

6.2 RFID-Cuboid compression

The RFID-Cuboids form the basis for future query pro-
cessing and analysis. As mentioned previously, the advan-
tage of these data structures is that they aggregate and col-
lapse many records in the cleansed RFID database. Here,
we examine the effects of this compression on different data
sets. We will compare two different compression strategies,
both use the stay and info tables, but one uses the map table
as described in the paper (map), whereas the other uses an
EPC list to record the items at each stay record (nomap).

Figure 1 shows the size of the cleansed RFID database
(clean) compared with the map and nomap RFID-Cuboids.
The datasets contains 1,000 distinct products, traveling in
groups of 500, 150, 40, 8, and 1 through 5 path stages, and
500 thousand to 10 million cleansed RFID records. The
RFID-Cuboid is computed at the same level of abstraction
of the cleansed RFID data, and thus the compression is loss-
less. As it can be seen from Figure 1 the RFID-Cuboid
that uses the map has a compression power of around 80%
while the one that uses EPC lists has a compression power
of around 65%.

0

50

100

150

200

250

300

350

0,1 0,5 1 5 10

Input Stay Records (millions)

S
iz

e
(M

B
yt

es
)

clean

nomap

map

Figure 1. Compression vs. Cleansed Data
Size. P = 1000, B = (500, 150, 40, 8, 1), k = 5.

Figure 2 also shows the size of the cleansed RFID
database (clean) compared with the map and nomap
RFID-Cuboids. In this case we vary the degree of bulkiness
of the paths, e.g., the number of tags that stay and move
together through the system. We define 5 levels of bulki-
ness a = (500, 230, 125, 63, 31), b = (500, 250, 83, 27, 9),
c = (500, 150, 40, 8, 1), d = (200, 40, 8, 1, 1), and e =
(100, 10, 1, 1, 1). The bulkiness decreases from dataset a
to e. As it can be seen in the figure, for more bulky data
the RFID-Cuboid that uses the map clearly outperforms the
nomap cuboid; as we move towards less bulky data the ben-
efits of the map decrease as we get many entries in the map

that point to just one gid. For paths where a significant por-
tion of the stages are traveled by a single item the benefit
of the map disappears and we are better off using EPC lists.
A possible solution to this problem is to compress all map
entries that have a single child into one.

0

5

10

15

20

25

30

35

a b c d e

Path Bulkiness

S
iz

e
(M

B
yt

es
)

clean

nomap

map

Figure 2. Compression vs. Data Bulkiness.
P = 1000, N = 1, 000, 000, k = 5.

Figure 3 shows the compression obtained by climbing
along the concept hierarchies of the dimensions in the stay
and info tables. Level-0 cuboids have the same level in the
hierarchy as the cleansed RFID data. The three higher level
cuboids offer one, two, and three levels of aggregation re-
spectively at all dimensions (location, time, product, man-
ufacturer, color). As expected the size of the cuboids at
higher levels decreases. In general the cuboid using the map
is smaller, but for the top most level of abstraction the size
is the same as for the nomap cuboid. At level 3 the size of
the stay table is just 96 records, and most of the space is ac-
tually used by recording the RFID tags themselves and thus
it makes little difference if we use a map or not.

0

2

4

6

8

10

12

1 2 3 4

Abstraction Level

S
iz

e
(M

B
yt

es
)

nomap

map

Figure 3. Compression vs. Abstraction Level.
P = 1000, B = (500, 150, 40, 8, 1), k = 5, N =
1, 000, 000.

Figure 4 shows the time to build the RFID-Cuboids at
the same four levels of abstraction used in Figure 3. In all
cases the cuboid was constructed starting from the cleansed
database. We can see that cuboid construction time does not
significantly increase with the level of abstraction. This is
expected as the only portion of the algorithm that incurs ex-
tra cost for higher levels of abstraction is the aggregation of

8

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

the info table, and in this case it contains only 1,000 entries.
This is common as we expect the cleansed RFID stay table
to be orders of magnitude larger than the info table. The
computation of RFID-Cuboids can also be done from lower
level cuboids instead of doing it from the cleansed database.
For the cuboids 1 to 3 of Figure 4 we can obtain savings of
50% to 80% in computation time if we build cuboid i from
cuboid i − 1.

0
50

100
150
200
250
300
350
400

0.1 0.5 1 5

Input Stay Records (millions)

S
ec

o
n

d
s

Cuboid 0

Cuboid 1

Cuboid 2

Cuboid 3

Figure 4. Construction Time. P = 1000, B =
(500, 150, 40, 8, 1), k = 5.

6.3 Query Processing

A major contribution of the RFID data warehouse model
is the ability to efficiently answer many types of queries at
various levels of aggregation. In this section, we show this
efficiency in several settings. We compare query executing
under three scenarios: the first is a system that directly uses
the cleansed RFID database (clean), the second one that
uses the stay table but no map, it instead uses EPC lists at
each stay record (nomap), and the third is the RFID-Cuboid
described in the paper using stay and map tables (map). We
assume that for each of the scenarios we have a B+Tree on
each of the dimensions. In the case of the map cuboid the
index points to a list of gids matching the index entry. In the
case of the nomap cuboid and the cleansed database the in-
dex points to the tuple (RFID tag, record id). This is nec-
essary as each RFID tag can be present in multiple records.
The query answering strategy used for the map cuboid is
the one presented in Algorithm 3. The strategy for the other
two cases is to retrieve the (RFID tag, record id) pairs
matching each component of the query, intersecting them,
and finally retrieving the relevant records.

For the experiments we assumed that we have a page size
of 4096 bytes, and that RFID tags, record ids, and gids use
4 bytes each. We also assume that all the indices fit in mem-
ory except for the last level. For each of the experiments we
generated 100 random path queries. The query specifies a
product, a varying number of locations (3 on average), and
a time range to enter the last stage (time out). Semantically
this is equivalent to asking “What is the average time for

product X to go through locations L1, . . . , Lk entering lo-
cation Lk between times t1 − t2? ”.

Figure 5 shows the effect of different cleansed database
sizes on query processing. The map cuboid outperforms
the cleansed database by several orders of magnitude, and
most importantly the query answer time is independent of
database size. The nomap cuboid is significantly faster
than the cleansed data but it suffers from having to retrieve
very long RFID lists for each stage. The map cuboid ben-
efits from using very short gid lists, and using the path-
dependent gid naming scheme that facilitates determining
if two stay records form a path without retrieving all inter-
mediate stages.

1

10

100

1.000

10.000

1 2 3 4 5

Input Stay Records (millions)
I/O

 O
p

er
at

io
n

s
(l

o
g

 s
ca

le
)

clean

nomap

map

Figure 5. Query Processing I. P = 1000, B =
(500, 150, 40, 8, 1), k = 5.

Figure 6 shows the effects of path bulkiness on query
processing. For this experiment we set the number of stay
records constant at 1 million. The bulkiness levels are
the same as those used for the experiment in Figure 2.
As with the compression experiment since we have more
bulky paths, the map cuboid is an order of magnitude faster
than the cleansed RFID database. As we get less bulky
paths, the benefits of compressing multiple stay records de-
creases until the point at which it is no better than using
the cleansed database. The difference between the map and
nomap cuboids is almost an order of magnitude for bulky
paths, but as in the previous case, for less bulky paths the
advantage of using the map decreases.

1

10

100

1.000

10.000

100.000

1 2 3 4 5

Path Bulkiness

I/O
 O

p
er

at
io

n
s

(l
o

g
 s

ca
le

)

clean

nomap

map

Figure 6. Query Processing II. P = 1000, k = 5.

9

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

7 Related Work

RFID technology has been researched from several per-
spectives: (1) the physics of building tags and readers [3, 7],
(2) the techniques required to guarantee privacy and safety
[9], and (3) the software architecture required to collect, fil-
ter, organize, and answer online queries on tags [2, 4, 8].

The software architecture line of research is the closest
to our work but differs in that it is mainly concerned with
online transaction processing (OLTP) but not OLAP-based
data warehousing. [8] presents a comprehensive framework
for online management of RFID data, called the EPC Global
Network. [2] presents an overview of RFID data manage-
ment from a high-level perspective and it introduces the idea
of an online warehouse but without going into the detail at
the level of data structure or algorithm.

An RFID data warehouse shares many common princi-
ples with the traditional data cube [5]. They both aggregate
data at different levels of abstraction in multi-dimensional
space. Since each dimension has an associated concept hi-
erarchy, both can be (at least partially) modelled by a Star
schema. The problem of deciding which RFID-Cuboids to
construct in order to provide efficient answers to a variety of
queries specified at different abstraction levels is analogous
to the problem of partial data cube materialization studied
in [6, 10]. However, RFID-Cuboid differs from a traditional
data cube in that it also models object transitions in multi-
dimensional space.

8 Conclusions

We have proposed a novel model for warehousing RFID
data that allows high-level analysis to be performed effi-
ciently and flexibly in multidimensional space. The model
is composed of a hierarchy of highly compact summaries
(RFID-Cuboids) of the RFID data aggregated at different
abstraction levels where data analysis can take place. Each
RFID-Cuboid records item movements in the stay, info, and
map tables that take advantage of the fact that individual
items tend to move and stay together (especially at higher
abstraction levels) to collapse multiple movements into a
single record without loss of information. Our performance
study shows that the size of RFID-Cuboids at interesting ab-
straction levels can be orders of magnitude smaller than the
original RFID database and can be constructed efficiently.
Moreover, we show the power of our data structures and
algorithms in efficient answering of a wide range of RFID
queries, especially those related to object transitions.

Our study has been focused on efficient data warehous-
ing and OLAP-styled analysis of RFID data. Efficient meth-
ods for a multitude of other data mining problems for the
RFID data (e.g., trend analysis, outlier detection, path clus-
tering) remain open and should be a promising line of future

research.
Notice that our proposal of the RFID model and its

subsequent methods for warehouse construction and query
analysis is based on the assumption that RFID data tend to
move together in bulky mode, especially at the early stage.
This fits a good number of RFID applications, such as sup-
ply chain management. However, there are also other appli-
cations where RFID data may not have such characteristics.
We believe that further research is needed to construct effi-
cient models for such applications.

References

[1] S. Chaudhuri and U. Dayal. An overview of data ware-
housing and OLAP technology. SIGMOD Record, 26:65–74,
1997.

[2] S. Chawathe, V. Krishnamurthy, S. Ramachandran, and
S. Sarma. Managing RFID data. In Proc. Intl. Conf. on Very
Large Databases (VLDB’04).

[3] K. Finkenzeller. RFID Handbook: Fundamentals and Appli-
cations in Contactless Smart Cards and Identification. John
Wiley and Sons, 2003.

[4] C. Floerkemeier, D. Anarkat, T. Osinski, and M. Har-
rison. PML core specification 1.0. White paper, MIT
Auto-ID Center, http://www.epcglobalinc.
org/standards technology/Secure/v1.0/
PML Core Specification v1.0.pdf, 2003.

[5] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-
tab and sub-totals. Data Mining and Knowledge Discovery,
1:29–54, 1997.

[6] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Imple-
menting data cubes efficiently. In Proc. 1996 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’96).

[7] S. Sarma. Integrating RFID. ACM Queue, 2(7):50–57, Oc-
tober 2004.

[8] S. Sarma, D. L. Brock, and K. Ashton. The net-
worked physical world. White paper, MIT Auto-ID
Center, http://archive.epcglobalinc.org/
publishedresearch/MIT-AUTOID-WH-001.pdf,
2000.

[9] S. E. Sarma, S. A. Weis, and D. W. Engels. RFID systems,
security & privacy implications. White paper, MIT Auto-ID
Center, http://archive.epcglobalinc.org/
publishedresearch/MIT-AUTOID-WH-014.pdf,
2002.

[10] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized
view selection for multidimensional datasets. In Proc. 1998
Int. Conf. Very Large Data Bases (VLDB’98).

[11] Venture Development Corporation (VDC). http://www.
vdc-corp.com/.

10

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

