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ABSTRACT 
In this paper, we present the design, implementation, and evalua-
tion of a system that executes complex event queries over real-time 
streams of RFID readings encoded as events. These complex event 
queries filter and correlate events to match specific patterns, and 
transform the relevant events into new composite events for the use 
of external monitoring applications. Stream-based execution of 
these queries enables time-critical actions to be taken in environ-
ments such as supply chain management, surveillance and facility 
management, healthcare, etc. We first propose a complex event 
language that significantly extends existing event languages to 
meet the needs of a range of RFID-enabled monitoring applica-
tions. We then describe a query plan-based approach to efficiently 
implementing this language. Our approach uses native operators to 
efficiently handle query-defined sequences, which are a key com-
ponent of complex event processing, and pipelines such sequences 
to subsequent operators that are built by leveraging relational tech-
niques. We also develop a large suite of optimization techniques to 
address challenges such as large sliding windows and intermediate 
result sizes. We demonstrate the effectiveness of our approach 
through a detailed performance analysis of our prototype imple-
mentation as well as through a comparison to a state-of-the-art 
stream processor.       

1 INTRODUCTION 
Sensor devices such as wireless motes and RFID (Radio Fre-
quency Identification) readers are gaining adoption on an increas-
ing scale for tracking and monitoring purposes. Wide deployment 
of these devices will soon generate an unprecedented volume of 
events. An emerging class of applications such as supply chain 
management [14], surveillance and facility management [18], 
healthcare [14], tracking in the library [26], and environmental 
monitoring [8] require such events to be filtered and correlated for 
complex pattern detection and transformed to new events that 
reach a semantic level appropriate for end applications. These re-
quirements constitute a distinct class of queries that perform real-
time translation of data describing a physical world into informa-
tion useful to end applications.  

An expressive, user-friendly language is needed to support this 
class of queries for complex event processing. For a concrete ex-
ample, consider shoplifting detection in a retail store; a query ac-
complishing this consists of a sequence of events that describe the 
scenario where an item was picked up at a shelf and then taken out 

of the store without being checked out. Complex event queries like 
this can address both occurrences and non-occurrences of events, 
and impose temporal constraints (e.g., order of occurrences and 
sliding windows) as well as value-based constraints over these 
events. Publish/subscribe systems [1][5][12][25] focus mostly on 
subject or predicate-based filters over individual events. Languages 
for stream processing [2][7][19] lack constructs to address non-
occurrences of events and become unwieldy for specifying com-
plex order-oriented constraints. Complex event languages [4][6] 
[15][16][22][30] developed for active database systems lack sup-
port for sliding windows and value-based comparisons between 
events. While it is not our intention to design a brand new lan-
guage in this work, we leverage existing complex event languages 
with substantial extensions to address the needs of a wide range of 
monitoring applications using RFID technology. 

Given a suitable language, it is imperative that queries ex-
pressed in this language be efficiently executed to meet demanding 
performance requirements. Most work on complex event languages 
in the area of active databases lacks implementation details. Stream 
processing systems in the relational setting [7][9][19][24] are not 
optimized for complex event processing, whereas event processing 
systems very recently developed [18][26][29] have not focused on 
fast implementations. In this work, we investigate a fast implemen-
tation of our proposed language. In particular, we address two 
challenges that arise in the context of large-scale event processing:  
• High volume streams: The volume of events generated by large 

deployments of receptors can reach thousands of events per 
second or higher. For example, a retail management system set 
up for a large store receives events whenever items are moved 
from or to the backroom, placed on or picked from a shelf, pur-
chased, or taken out of the store. Complex event processing 
must be able to keep up with such high-volume event streams.   

• Extracting events from large windows: Event monitoring appli-
cations often apply a sliding window (e.g., within the past 12 
hours) to a sequence of events of interest. In many scenarios, 
such windows are large and the events relevant to a query are 
widely dispersed with others across the window. Unlike simple 
event detection that reports only the satisfaction of a query but 
not how, extracting relevant events to create all possible results 
causes significant increase in processing complexity.  
In this paper, we present SASE, an event processing system 

that executes complex event queries over real-time streams of 
RFID readings. These complex event queries filter and correlate 
events to match specific patterns, and transform the relevant events 
into new events for the use of external monitoring applications. 
Stream-based execution of these queries allows a monitoring ap-
plication to be notified immediately when all relevant events have 
been received; as a result, time critical actions can be taken to pre-
vent loss in value and mitigate harm to life, property or the envi-
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ronment. Specifically, we make the following contributions:  
1. We propose a complex event language that significantly ex-

tends existing event languages [6][30] to meet the needs of 
RFID-enabled monitoring applications. The extensions include 
flexible use of negation in sequences, parameterized predicates, 
and sliding windows. The language is compact and amenable 
to fast implementation, as we demonstrate in this work.   

2. We develop a query plan-based approach to implementing the 
language. This approach is based on a new abstraction of com-
plex event processing, i.e., a dataflow paradigm with native se-
quence operators at the bottom, pipelining query-defined se-
quences to subsequent relational style operators. This abstrac-
tion is in sharp contrast to the implementation models of exist-
ing event systems based on fixed data structures such as finite 
automata [16], trees [6], or Petri nets [15]. The abstraction also 
differs from stream systems in that it uses native sequence op-
erators (rather than joins) to handle query-defined sequences.  

3. The new abstraction of complex event processing enables us to 
explore alternatives to optimize for two salient issues that arise 
in event processing over streams: large windows and large in-
termediate result sizes. We develop intra-operator optimiza-
tions to expedite sequence operations in the presence of large 
windows, and inter-operator optimizations that strategically 
push predicates and window constraints down to sequence op-
erators to reduce intermediate result sizes. 

4. We demonstrate the effectiveness of the above techniques 
through a detailed performance study using a range of data and 
query workloads. We also compare SASE to a state-of-the-art 
stream processor. The results of the latter study verify the need 
for using native sequence operators and highly optimized query 
plans for high-performance complex event processing. 
The remainder of the paper is organized as follows. We de-

scribe a complex event language in Section 2. We present an over-
view of a query plan-based approach in Section 3 and a large suite 
of optimization techniques in Section 4. We report on the results of 
a detailed performance study in Section 5. Section 6 covers related 
work. Section 7 concludes the paper.  

2 A COMPLEX EVENT LANGUAGE 
In this section, we present the complex event language that SASE 
uses, and illustrate how this language can be used to support a 
range of emerging RFID-based applications.  

2.1 Event Model  
We first describe an event model that serves as a basis for the lan-
guage we define in the next subsection. In this model, the input to 
an event processing system is an infinite sequence of events, which 
is referred to as an event stream. An event represents an instanta-
neous and atomic (i.e., happens completely or not at all) occur-
rence of interest at a point in time [6]. Similar to the distinction 
between types and instances in database systems and programming 
languages, our model includes event types that describe a set of 
attributes that a class of events must contain. Each event, denoted 
by a lower-case letter (e.g., ‘a’), consists of the name of its type, 
denoted by an upper-case letter (e.g., ‘A’), and a set of values cor-
responding to the attributes defined in the type.  

Each event is assigned a timestamp from a discrete ordered 
time domain. We assume that such timestamps are assigned by a 
separate mechanism before events enter the event processing sys-
tem and that they reflect the true order of the occurrences of these 
events. Furthermore, we assume that events are totally-ordered. 
This latter assumption, which may not be true in all scenarios, is 
acceptable in our target applications and allows us to focus on the 
language and processing issues critical to those applications. Sup-
port for concurrent events will be addressed in our future work. 

2.2 SASE Event Language 
The SASE event language is a declarative language that combines 
filtering, correlation, and transformation of events: it can be used 
to specify how individual events are filtered, how multiple events 
are correlated via time-based and value-based constraints, and how 
query answers are constructed from the correlated events. In the 
following, we survey the language and define its formal semantics. 
2.2.1 Overview of the Language 
The overall structure of the SASE language is: 

EVENT <event pattern> 
[WHERE <qualification>] 
[WITHIN <window>] 

We now explain the various constructs using examples drawn from 
an RFID-based retail management scenario: A RFID tag is at-
tached to every product in a retail store. RFID readers are installed 
above the shelves, checkout counters, and exits. A reader generates 
a reading if a product is in its read range. In our examples, we as-
sume that readings at the shelves, checkout counters, and exits are 
represented as events of three distinct types.  

The first query (Q1) retrieves readings at a shelf about a prod-
uct whose category is food and whose manufacturer has id ‘1’. In 
this query, the EVENT clause contains an event type test “SHELF-
READING” that retrieves the events of the SHELF-READING type 
from the input stream. The WHERE clause further filters those 
events by evaluating two predicates applied to their attributes: the 
first predicate requires the value of the attribute category to be 
‘food’ and the second requires the value of the attribute manufac-
turer_id to be ‘1’. In general, the WHERE clause can be a boolean 
combination (using logical connectives ∧ and ∨) of predicates that 
use one of the six comparison operators (=, ≠, >, <, ≥, ≤).  
Q1: EVENT    SHELF-READING  

WHERE   category = ‘food’ ∧ manufacturer_id  = ‘1’ 
The second query (Q2) detects shoplifting activity: it reports 

items that were picked at a shelf and then taken out of the store 
without being checked out. The EVENT clause of this query con-
tains a SEQ construct that specifies a sequence in particular order; 
the components of the sequence are the occurrences and non-
occurrences of events of interest. In this query, the SEQ construct 
specifies a sequence that consists of the occurrence of a SHELF-
READING event followed by the non-occurrence of a COUNTER-
READING event followed by the occurrence of an EXIT-READING 
event. Non-occurrences of events, also referred to as negation in 
this work, are expressed using the ‘!’ sign. For the use of subse-
quent clauses, the SEQ construct also includes a variable in each 
sequence component to refer to the corresponding event.  

The WHERE clause of Q2 uses the variables defined previously 
to form predicates that compare attributes of different events. To 
distinguish from simple predicates that compare to a constant like 
those in Q1, we refer to such predicates as parameterized predi-
cates as the attribute of the later event addressed in the predicate is 
compared to a value that an earlier event provides (a similar notion 
was proposed in [10]). The parameterized predicates in this query 
compare the id attributes of all three events in the SEQ construct for 
equality. Equality comparisons on a common attribute across an 
entire event sequence are typical in RFID-based applications. For 
ease of exposition, we refer to the common attribute used for this 
purpose as an equivalence attribute, and the set of equality com-
parisons on this attribute as an equivalence test. Our language 
offers a shorthand notation: an equivalence test on an attribute 
(e.g., id) can be simply expressed by enclosing the attribute name 
in a pair of square brackets (e.g., [id], as shown in the comment on 
the WHERE clause in Q2). Moreover, if an equivalence test further 



 

requires all events to have a specific value (e.g., ‘1’) for the attrib-
ute id, we can express it as [id=‘1’].  

Finally, the query Q2 also contains a WITHIN clause to specify a 
time period, e.g., 12 hours, in which the events of interest must 
occur. In our language, the time period is expressed as a sliding 
window, as in most stream languages.  
Q2: EVENT    SEQ(SHELF-READING x, ! (COUNTER-READING y),  

EXIT-READING z) 
WHERE   x.id = y.id  ∧ x.id = z.id  /* or equivalently, [id] */ 
WITHIN   12 hours 
Summary of language features. The above examples demon-

strate the use of the constructs of our language. As stated previ-
ously, our language draws on complex event languages [4][6][16] 
[22][30] developed for active databases. In comparison, it supports 
not only basic constructs such as sequence and negation that exist-
ing event languages have, but also crucial new features that many 
emerging applications require. In particular, our language: 
• offers flexible use of negation in event sequences, a significant 

extension to any existing event language supporting negation;  
• adds parameterized predicates for correlating events via value-

based constraints; 
• includes sliding windows for imposing additional temporal 

constraints; and 
• resolves the semantic subtlety of negation when used together 

with sliding windows, which none of the prior work considers. 
The addition of these features enables our language to capture a 
wide variety of event correlations. 

Output. Given a sequence of events as input, the output of a 
SASE query is also a sequence of events. Each result event repre-
sents a unique match of the query. Take the query Q2 for example. 
A result is created for Q2 if a SHELF-READING event and an EXIT-
READING event satisfy the SEQ construct as well as the WHERE and 
WITHIN clauses. These two input events represent a unique match 
of the query, hence called the matching component events of the 
query. For each unique match of the query, the result event con-
tains the concatenation of all the attributes of those matching com-
ponent events. As such, a result event provides all necessary in-
formation that monitoring applications may require for conducting 
further actions. Unlike previous work that focuses on complex 
event “detection” (i.e., only reporting that an event query is satis-
fied but not how) [6][15][16][18], we explicitly report what events 
are used to match the query. This significantly increases the com-
plexity of query processing, as we shall show in Sections 3 and 4. 

In the rest of the paper, we refer to an event in an input se-
quence as a primitive event, and one in an output sequence as a 
composite event, as it is composed from a few input events. It is 
worth noting that the design of the SASE language follows our 
vision of a fully compositional language−the language would allow 
the output of a query to be used as input to another. The fact that a 
SASE query takes a sequence of (primitive) events and produces a 
sequence of (composite) events enables an extension to full com-
positionality. This extension is further discussed in Section 2.4.  
2.2.2 Formal Semantics 
We formally define the semantics of our language by translating its 
language constructs to algebraic query expressions. To begin with, 
each event type Ai is a query expression. An event operator con-
nects a number of query expressions to form a new expression. 
Semantics is added to a query expression by treating it as a func-
tion mapping the underlying discrete time domain onto the boolean 
values True or False (similar to [6]). For example, the semantics of 
a base expression Ai, represented as Ai(t), is that at a given point t 
in time, Ai(t) is True if an Ai type event occurred at t, and is False 
otherwise. Below, we describe the set of operators that SASE sup-
ports and the semantics of expressions that they form. 

ANY operator. The ANY operator can be used in the EVENT 
clause of a query. It takes a set of event types as input and evalu-
ates to True if an event of any of these types occurs. Formally, it is 
defined as follows: 
ANY(A1, A2, …, An) (t) ≡ ∃ 1≤i≤ n  Ai(t) 
It outputs the event that occurred at time t as a result. 

SEQ_ operator. In the absence of negation, a SEQ construct in 
the EVENT clause is translated to an expression with a SEQ_ opera-
tor. SEQ_  takes a list of n (n>1) event types as its parameters, e.g., 
SEQ_(A1, A2, …, An). It specifies a particular order in which the 
events of interest should occur. It, however, allows an arbitrary 
number of events to appear between the two events addressed by 
two consecutive parameters. This operator is formally defined as:  
SEQ_(A1, A2, …, An) (t) ≡ ∃ t1<t2<…<tn=t  A1(t1)∧A2(t2) ∧…∧An(tn) 
The ANY operator can be used inside the SEQ construct, e.g., 
SEQ(A1, ANY(A21, …, A2m), …). The semantics of the corresponding 
expression can be defined by combining the semantics of SEQ_ and 
ANY. The definition is omitted in this paper in the interest of space. 

A result created by SEQ_ contains the concatenation of all the 
attributes of the matching component events of the sequence. 

SEQ_WITHOUT operator. In the presence of negation, a SEQ 
construct in the EVENT clause is translated into an expression using 
a SEQ_WITHOUT operator. Let S1 denote A11, …, A1m and S2 denote 
A21, …, A2n. When these event types are used in the SEQ construct 
without the ‘!’ symbol, we refer to them as positive components of 
SEQ_WITHOUT. Let {B} denote an event type that is not allowed to 
appear, referred to as a negative component of SEQ_WITHOUT. 
SEQ_WITHOUT(S1,  {B}, S2) (t) ≡ ∃ t11<…<t1m<t21<…<t2n=t 

A11(t11)∧…∧A1m(t1m)∧A21(t21)∧…∧A2n(t2n)∧(∀ti∈(t1m, t21) ¬B(ti)) 
This operator specifies that no event of the B type can appear be-
tween the two event sequences S1 and S2.  

There are two special cases of SEQ_WITHOUT. The first case, re-
ferred to as negated start, disallows any event of the B type to 
appear before the event sequence S2, which is denoted as 
SEQ_WITHOUT({B}, S2). The second case, negated end, disallows 
any event of the B type to appear after the event sequence S1, de-
noted as SEQ_WITHOUT(S1,  {B}). These two cases are of practical use 
only when used in combination with the WITHIN clause. Their defini-
tions are postponed until we present the definition of WITHIN.  

More general cases of SEQ_WITHOUT include: (1) a negative 
component can be a single event type or a set of event types con-
nected using an ANY operator, and (2) negative components can be 
arbitrarily interleaved with positive components. Due to space 
constraints, we omit formal definitions of these cases in this paper.  

A result created by SEQ_WITHOUT only includes attributes of 
the events that match the positive components of SEQ_WITHOUT; 
negative components do not contribute to the content of the result. 

Selection operator. Recall that the WHERE clause of a query is 
boolean combination (using ∧ and ∨) of simple and parameterized 
predicates. This clause is translated to an expression with a selec-
tion operator (σ). The semantics of the expression is defined for 
two cases: SEQ_ and SEQ_WITHIN. For SEQ_(A1, …, An), assume that 
variables x1, …, xn refer to the respective events in the sequence. 
With negation, e.g., SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n), 
an additional variable xb is used to refer to each negative compo-
nent. Let Ρ denote a set of predicates connected using ∧ and ∨.  

A selection operator applied to SEQ_ can be defined as: 
σ(SEQ_(A1, …, An),  Ρ) (t) ≡ ∃ t1< …<tn=t  A1(t1)∧…∧An(tn) ∧ (Ρ) 
Note that if Ρ contains a predicate referring to the xi.aj attribute but 
the event denoted by xi does not contain an aj attribute, the predi-
cate evaluates to True by definition in our language. This is de-
signed to accommodate ANY operators used in the SEQ construct.  



 

To define σ for SEQ_WITHOUT, we rewrite Ρ into a disjunctive 
normal form Ρ1∨…∨Ρp with each Ρi representing a conjunction of 
predicates. We further rewrite Ρi as Ρi+∧Ρi-, with Ρi+ denoting the 
conjunction of those predicates that do not involve a variable refer-
ring to a negative component, and Ρi- representing the rest. Then σ 
applied to SEQ_WITHOUT can be defined as follows: 
σ(SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n),  Ρ) (t) ≡ 

σ(SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n),  Ρ1+∧Ρ1-) (t) ∨… 
σ(SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n),  Ρp+∧Ρp-) (t)  

σ(SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n),  Ρi+∧Ρi-) (t) ≡ 
∃ t11< …<t1m<t21<…<t2n=t 
  A11(t11)∧…∧A1m(t1m)∧A21(t21)∧…∧A2n(t2n) ∧ (Ρi+) ∧ 
  ∀ti∈(t1m, t21) ¬(B (ti) ∧ (Ρi-)) 
WITHIN_ operator. The WITHIN clause of a query is translated 

using a WITHIN_ operator. This operator requires the specified 
event or event sequence to occur within a window T. Formally, it 
is defined for SEQ_ and SEQ_WITHOUT as follows:  
WITHIN_(SEQ_(A1, …, An), T) (t) ≡ ∃ t-T<t1<…<tn=t A1(t1)∧…∧An(tn) 
WITHIN_(SEQ_WITHOUT(S1, {B}, S2), T) (t) ≡ 

∃ t-T<t11…<t1m<t21<…<t2n=t 
A11(t11)∧…∧A1m(t1m)∧A21(t21)∧…∧A2n(t2n)∧(∀ti∈(t1m, t21)¬B (ti)) 
Definitions are also given below for the two special cases of 

SEQ_WITHOUT, namely, negated start and negated end: 
WITHIN_(SEQ_WITHOUT({B}, S2), T) (t) ≡ ∃ t-T<t21<…<t2n=t 

A21(t21)∧…∧A2n(t2n)∧(∀ti∈(t-T, t21) ¬B (ti)) 
WITHIN_(SEQ_WITHOUT(S1,  {B}), T) (t) ≡ ∃ t-T+1=t11<…<t1m<t 

A11(t11)∧…∧A1m(t1m) ∧(∀ti∈(t1m, t] ¬BB (ti)) 
It is important to note our special treatment of negated end when 
WITHIN is applied: the first event in S1 is required to occur at time 
t-T+1.  We add this constraint to avoid anomalies. Take “WITHIN_( 
SEQ_WITHOUT(A, {B}), T)” for example. Without the constraint 
that a type A event must occur at t-T+1, the query can be satisfied 
by any A event not immediately followed by a B event, because we 
can simply choose t as the point in time right after the A event to 
satisfy the query. As we expect such matches to be uninteresting to 
most users, we add this additional constraint to ensure that an A 
event occurred at t-T+1 and no B event followed it until time t. 

A final note is that in the absence of negation, a WITHIN clause 
can be expressed using a predicate, i.e., the difference in time be-
tween the first and last events of a sequence is within T. With ne-
gation, especially negated start and end, a WITHIN clause can no 
longer be expressed using a predicate; a WITHIN_ operator as de-
fined above is needed to capture the correct semantics.   

2.3 Example Applications  
In the previous section, we illustrated our language using two ex-
amples. Our language is in fact suitable for many tasks in retail 
management [14] and a wide range of applications including 
healthcare [14], surveillance and facility management [18], envi-
ronmental monitoring [8], network security [23], etc. In the follow-
ing, we demonstrate the expressiveness of our language using more 
examples from retail management and healthcare:  

Retail management. Besides shoplifting, another important 
task in retail management is handling misplaced inventory [14], 
which currently takes an immense amount of time of retail person-
nel. The combination of RFID technology and our event language 
provides a means to automate this process, saving tremendous 
human effort as well as expediting shelf replenishment. A query 
handling misplaced inventory can be written in our language as: 

EVENT  SEQ(SHELF-READING x,  SHELF-READING y,  
                  ! (ANY(COUNTER- READING, SHELF-READING) z) ) 
WHERE   [id] ∧ x.shelf_id ≠ y.shelf_id ∧  x.shelf_id = z.shelf_id  
WITHIN  1 hour 

The query specifies that a misplacement case consists of a reading 
of an item at Shelf 1, followed by a reading of the same item at 
Shelf 2, which is not followed by any reading of the item at a 
checkout counter or back at shelf 1. The predicate “x.shelf_id ≠ 
y.shelf_id” ensures that the two first SHELF-READINGs refer to 
different shelves. The predicate “x.shelf_id = z.shelf_id”, with z 
referring to a negative component of SEQ, ensures that if the ANY 
operator returns a SHELF-READING, the reading is not from Shelf 1.  

Healthcare: The pharmaceutical industry is moving toward a 
standard in which RFID tags will be placed on pill bottles, afford-
ing a healthcare system an opportunity to develop solutions for 
medical compliance. When RFID readers are placed in the envi-
ronment where medicines are kept, the system can track if the right 
medications are being taken at the right time by the right person 
[14]. For example, the following query can be used to raise an alert 
if a patient has taken an overdose of antibiotics in the past 4 hours. 

EVENT       SEQ(MEDICINETAKEN x, MEDICINETAKEN y)  
WHERE [name=‘John’] ∧ [medicine=‘Antibiotics’] ∧ 

(x.amount + y.amount) > 1000 
WITHIN    4 hours 

Another example would be to detect if John has taken other medi-
cines that adversely interact with the antibiotics in his prescription. 
Many other examples where our language is applicable include 
safeguarding equipment use, activity monitoring for the elderly, 
etc. Queries for them are omitted due to space constraints. 

2.4 Limitations 
It is important to note that the goal of this work is to provide an 
event language that is compact yet useful to today’s RFID-based 
monitoring applications. Our language currently has several limita-
tions, which we will address in our future work. 

Hierarchy of complex event types. Our language allows queries 
to transform events from primitive types to complex types, but 
currently not from complex types to (even more) complex types. 
The latter can be achieved by adding language constructs that feed 
the output a query as input to another. In this paper, however, we 
focus on the former simpler problem and seek a fast implementa-
tion of it, which serves as an important step towards more sophisti-
cated processing that real-world applications may later require. 

Total order on events. Recall that our language assumes total 
ordering of events. A known issue with this assumption [30] arises 
in the following scenario: A composite event usually obtains its 
timestamp from one of its primitive events; when such composite 
events are mixed together with primitive events to detect more 
complex events, the assumption of total order on all events no 
longer holds. This, again, will be considered when we address full 
compositionality of the language.  

Aggregates. Our language can be extended to support aggre-
gates such as count( ) and avg( ). As aggregates over streams have 
been extensively studied in the field of stream processing [2][7] 
[9][13], we expect to adopt many stream processing techniques in 
our system. This topic, however, is beyond the scope of this paper. 

3 A QUERY PLAN-BASED APPROACH 
Having described our complex event language, we next present a 
query plan-based approach to implementing this language. Our 
approach is motivated by the observation that most existing event 
systems use implementation models based on fixed data structures 
such as trees [6], directed graphs [18], finite automata [16], or Petri 
nets [15]. In these models, query execution strictly follows the 
internal organization of a specific data structure and is unable to 
explore alternative approaches to evaluating the query. Further-
more, we find it hard to extend such implementations to support a 
richer query language for emerging advanced applications. In con-



 

trast, our approach employs an abstraction of complex event proc-
essing that is a dataflow paradigm with pipelined operators as in 
relational query processing. As such, it provides flexibility in 
query execution, ample opportunities for optimization, and exten-
sibility as the event language evolves.   

In our new abstraction of complex event processing, a key data 
structure for the dataflow is the query-defined event sequence. 
Such event sequences play a central role in translating the query 
input into the query output. Constructing these sequences, how-
ever, has either been done using expensive join operations in 
stream systems, or been ignored or under-addressed in other event-
related systems. Our approach is unique in its way of handling 
these sequences: We devise native operators to read query-specific 
event sequences efficiently from continuously arriving events. 
These operators are used to form the foundation of each plan, feed-
ing the event sequences to the subsequent operators. This arrange-
ment allows the subsequent operators to be implemented by lever-
aging existing (e.g., relational) query processing techniques. 

In this section, we describe basic query plans. A large suite of 
optimization techniques will be presented in the next section. 

3.1 A Basic Query Plan 
A query plan in SASE consists of a subset of six operators: se-
quence scan, sequence construction, selection, window, negation, 
and transformation. For a concrete example, consider query Q3: 
Q3: EVENT   SEQ(A x1, B x2, ! (C x3), D x4)  

WHERE  [attr1, attr2] ∧ x1.attr3 = ‘1’ ∧ x1.attr4 < x4.attr4  
WITHIN T  

In this query, A, B, C, D represent four distinct event types. The 
WHERE clause contains a set of conjunctive predicates: (1) two 
equivalence tests on the respective attributes denoted by attr1 and 
attr2, which are common attributes of A, B, C, and D, (2) a simple 
predicate on attr3 of a type A event, and (3) a parameterized predi-
cate that compares a type A event and a type D event on attr4 using 
‘<’. The letter T represents a specified window size.  

A basic plan for Q3 and a dataflow created from an example 
event stream are illustrated in Figure 1. In the event stream pre-
sented at the bottom of the figure, a lower-case letter (e.g., ‘a’) 
represents an event of the type denoted by its corresponding upper-
case letter (e.g., ‘A’), and the number below each event is its as-
signed timestamp. Above the flow, rounded rectangles represent 
operators in the plan. From bottom-up, these operators are: 

 

  
Figure 1: An Execution Plan for Query Q3 

Sequence scan and construction (SSC). Sequence scan and 
sequence construction are always used together, forming a compo-
nent referred to as SSC. For a query using the SEQ construct in our 
language, SSC handles the positive components of SEQ, which 

make up a sub-sequence type of the original SEQ specification. For 
example, the sub-sequence type for Q3 is (A, B, D), which results 
from removing “!C” from SEQ(A, B, !C, D).  

SSC transforms a stream of events into a stream of event se-
quences; each event sequence represents a unique match of the 
SSC sub-sequence type. In Figure 1, the output of SSC is illus-
trated with seven event sequences created from the bottom stream. 
Each event sequence consists of three fields corresponding to the 
respective components of the sub-sequence type (A, B, D). The 
event in each field is denoted by a lower-case letter for its type and 
a subscript for its timestamp.   

Internally, SSC contains a sequence scan operator (SS→) that 
scans the event stream to detect matches of a sub-sequence type, 
and a sequence construction operator (SC←) that searches back-
ward (in a data structure summarizing the event stream) to create 
all event sequences. They will be explained in detail shortly. 

Selection (σ). As in relational query processing, a selection 
operator here filters each event sequence by applying all the predi-
cates including simple and parameterized ones. If the evaluation 
succeeds, the event sequence is emitted to the output. In Figure 1, 
three out of seven input event sequences pass the selection. 

Window (WD). The window operator imposes the constraint 
of the WITHIN clause. For each event sequence, it checks if the 
temporal difference between the first and last events is less than 
the specified window T. In the example in Figure 1, T is assumed 
to 6, and as a result, the second input event sequence is filtered out. 

Negation (NG). The negation operator handles the negative 
components of a SEQ construct which have been ignored by SSC. 
In the example of Figure 1, for each input event sequence, this 
operator checks if there exists a ‘c’ event that arrived between the 
‘b’ and ‘d’ events in the sequence and has the same value of attr1 
as the ‘b’ event (thus the same value as the ‘a’ and ‘d’ events).  If 
such a ‘c’ event exists, the event sequence is removed from output. 
In Figure 1, the second input event sequence to NG is filtered out.  

Transformation (TF). Finally, the transformation operator 
converts each event sequence to a composite event by concatenat-
ing attributes of all the events in the sequence. 

The execution of the above operators is pipelined: if an arriv-
ing event constitutes a match of a query with some previous 
events, a corresponding event sequence is emitted from SSC right 
away, pipelined through the subsequence operators, and added to 
the final output. Such processing is crucial to returning results in a 
timely fashion so that monitoring applications can trigger fast reac-
tion to the current situation. The implementation of selection, win-
dow, and transformation is straightforward. In the following, we 
explain the implementation of SSC and negation in more detail.  

3.2 Sequence Scan and Construction  
For sequence scan, a useful approach has been to adopt Non-
deterministic Finite Automata (NFA) to represent the structure of 
an event sequence [11][16]. Furthermore, the NFA-based approach 
can be extended to handle sequence construction, as proposed in 
YFilter [11] in the context of XML message filtering. We adapted 
these techniques in a basic implementation of sequence scan and 
construction (SSC), which is sketched in this subsection. Our main 
contributions, however, lie in (1) a large set of optimizations de-
veloped in this framework for event processing over streams (as 
opposed to small XML messages), and (2) efficient support for 
many features missing in XML filtering such as parameterization, 
windowing, and negation. These advanced techniques are pre-
sented in Sections 3.3 and 4.  

Sequence scan (SS→). For each SSC sub-sequence type, an 
NFA is created by mapping successive event types to successive 
NFA states. For example, Figure 2 shows an NFA created for the 
sub-sequence type (A, B, D), where state 0 is the starting state, 



 

                                                          

state 1 is for successful recognition of an A event, state 2 is for the 
recognition of a B event after that, and likewise state 3 is for the 
recognition of a D event after the B event.1 State 3, denoted using 
two concentric circles, is the (only) accepting state of the NFA. 
Note that states 1 and 2 contain a self-loop marked by a wildcard 
‘*’. Given an event, these states allow the NFA to loop at the same 
state, which can occur simultaneously with a forward transition if 
the type of the event matches that associated with the transition.  
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Figure 2: NFA-based Sequence Scan and Construction 

a1   b3   d9

a1   b6   d9
a4   b6   d9To keep track of these simultaneous states, a runtime stack is 

used to record the set of active states at a certain point and how this 
set leads to a new set of active states as an event arrives. Figure 2 
shows the evolution of a runtime stack (from left to right) for the 
event stream shown at the bottom. Each active state instance in the 
stack has one or two predecessor pointers specifying the active 
state instance(s) that it came from. State 0 is made active at each 
point to initiate a new search for every arriving ‘a’ event.    

Sequence construction (SC←). Once an accepting state is 
reached during sequence scan, sequence construction is invoked to 
create the event sequences that the most recent event has com-
pleted. An approach to sequence construction is to extract from the 
runtime stack a single-source DAG (Directed Acyclic Graph) that 
starts at an instance of the accepting state in the rightmost cell of 
the stack and traverses back along the predecessor pointers until 
reaching instances of the starting state. Such a DAG is illustrated 
using thick letters and edges in the stack in Figure 2, at the instant 
when the event d9 is encountered. Event sequences can be gener-
ated by enumerating all possible paths from the source to the sinks 
of the DAG. For each path, edges that connect two instances of the 
same state (representing a self-loop) are omitted; the remaining 
edges produce a unique event sequence, which contains the events 
that triggered the transitions denoted by those edges (see [11] for 
more details). Figure 2 also shows the three event sequences cre-
ated from the highlighted DAG in the stack.  

A simple algorithm for searching a DAG [11] has the complex-
ity of O(P), where P is the number of paths extracted from the 
DAG and in the worst case can be exponential. We improved on it 
by using a single Depth First Search, thus reducing the complexity 
to O(E), where E is the number of edges in the DAG. Since each 
active state instance has at most two predecessors, E is bounded by 
O(2LS), where L is the length of the sub-sequence type (thus the 
number of the states in the NFA), and S is the number of events in 
the stream. In practice, S can be set to the window size W by using 
a simple optimization that dynamically checks window constrains 
in the DAG search, thus yielding the O(2LW) complexity.  

3.3 Negation 
As mentioned previously, a negation operator (NG) handles the 
negative components of the SEQ construct in a query which have 
been ignored by SSC. For each input event sequence, NG performs 
two tasks for each negative component: (1) check if an event of the 
type specified in the negative component appeared in a specific 
time interval; and (2) if such an event exists, check if it satisfies all 
the relevant predicates. Any event that passes both checks evalu-
ates the current event sequence to False. In the following, we focus 
on the compile-time and runtime support for task (1). The support 
for task (2) is straightforward and will not be further discussed. 

At compile-time, the time interval for task (1) is generated as 
follows: For a sequence such as SEQ(A, !B, C), the interval is de-
fined as (A.timestamp, C.timestamp), where A and C are bound to 
the ‘a’ event and the ‘c’ event contained in each event sequence. 
For SEQ(!A, B), the window size T is used to set the interval to be 

 
1 For a sub-sequence type that contains an ANY() operator, e.g., (A, B, 
ANY(D, E)), a simple extension is to label the corresponding transition with 
the set of event types connected using “or”. 

(B.timestamp-T, B.timestamp). The handling of SEQ(A, !B) is 
somewhat special. Recall that given a window T, this query disal-
lows a ‘b’ event to follow an ‘a’ event within the window T (as 
described in Section 2.2.2). Accordingly, the interval created for 
this query is (A.timestamp, A.timestamp+T). In addition, the nega-
tion operator is marked as “postponed by T”, which indicates to the 
runtime system that the evaluation of each event sequence needs to 
be postponed by a period of length T after its arrival. 

The runtime system provides indexing support in addition to 
postponed evaluation (if necessary). Given a time interval, retriev-
ing all the events that occurred in the interval can be supported by 
using a standard relational indexing technique. For performance 
reasons, we use an advanced technique called partitioned indexing 
in this work. The idea is to partition an event stream by timestamp.  
If δ is the partition size, all the events of timestamp ∈ (δ*i, 
δ*(i+1)] go into partition i. For each event type involved in nega-
tion, say ‘B’, we build a separate index over each partition. More 
specifically, when a type B event arrives, if it belongs to the most 
recent partition, it is inserted to the type B index over this partition; 
otherwise, a new partition is created and the event becomes the 
first entry in the type B index. Then during evaluation, given a 
time interval, a negation operator quickly identifies all the parti-
tions that potentially overlap with this interval, and probes the type 
B indexes over these partitions to retrieve all the relevant ‘b’ 
events. A practical benefit of this approach is that we can garbage-
collect an entire partition with all its indexes in one step, once the 
partition has completely fallen out of the sliding window. 

4 OPTIMIZATION TECHNIQUES 
We presented a basic query plan for complex event processing in 
the previous section. This plan has not been optimized to address 
two salient issues that arise in stream-based event processing: 
large sliding windows and large intermediate result sizes. As men-
tioned in Introduction, large sliding windows are commonly used 
in monitoring applications. Sequence construction from events 
widely dispersed in large windows can be an expensive operation. 
Moreover, if a large fraction of event sequences created cannot 
lead to final results, tremendous work in sequence construction is 
wasted and high overhead is incurred in subsequent operators. As 
in traditional database systems, such intermediate result sizes af-
fect query processing performance. Since stream-based processing 
usually has stringent performance requirements, reduction of in-
termediate result sizes is of paramount importance in our context. 

In this section, we explore alternative query plans to optimize 
complex event processing for the above two issues. We develop 
intra-operator optimizations to expedite sequence scan and con-
struction (SSC) in the presence of large windows, and inter-
operator optimizations that strategically push predicates and win-
dows down to SSC to reduce intermediate result sizes. A mecha-
nism shared by all these optimizations is to index relevant events 
both in temporal order and across value-based partitions. 
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Figure 3: SSC using Active Instance Stacks 
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Figure 4: Partitioned Active Instance Stacks (PAIS) 4.1 Optimizing Sequence Scan and Construction 
As described in Section 3.2, the basic algorithm for sequence con-
struction searches the runtime stack from the most recent event all 
the way back to the oldest relevant event (the oldest event in the 
current window that contributes to the query). This can be highly 
inefficient when queries use large windows. Therefore, we employ 
an auxiliary data structure, Active Instance Stack (AIS),2 to expe-
dite sequence construction. The algorithm works as follows:  

Sequence Scan. In sequence scan, the NFA execution runs as 
before. In addition to that, an active instance stack is created at 
each NFA state to store the events that triggered transitions to this 
state; such events are referred to as active instances of this state. 
Following the example in Figure 2, Figure 3 shows the content of 
three AIS stacks after the event stream at the bottom of the figure 
is received. In each stack, from top-down, the active instances (in 
bold letters) represent the temporal order of their occurrences. 
From left to right, a series of three stacks capture the sequencing 
requirements of the query. Between adjacent stacks, the temporal 
order relevant to the query is encoded using an extra field of each 
active instance e, which stores the most recent instance in the pre-
vious stack (RIP) at the moment when e occurred. Take the active 
instance b6 in the B stack in Figure 3. The most recent instance in 
the A stack before b6 is a4, so the RIP field of b6 is set to a4, as 
shown in the ‘(’ ‘)’ preceding b6. This RIP field tells that any in-
stances in the A stack up to a4 can be matched with b6 if event 
sequences involving b6 need to be created. The information of RIP 
can be visualized by drawing two virtual edges from b6 to a1 and a4 
(shown by the arrows in Figure 3). 

Sequence Construction. Sequence construction is initiated for 
each active instance of the accepting state. With active instance 
stacks, the construction is simply done by a depth first search in 
the DAG that is rooted at this instance and contains all the virtual 
edges reachable from the root (note that our implementation only 
uses the RIP field of each active instance without creating the vir-
tual edges). Each root-to-leaf path in the DAG corresponds to one 
unique event sequence. The three event sequences created for the 
active instance d9 are also shown in Figure 3.  

4.2 Pushing Predicates Down 
Having described active instance stacks for improving sequence 
construction, we now turn to address intermediate results sizes. An 
important optimization for this purpose is to evaluate predicates 
early in a query plan as in database systems. In SASE, we develop 
a series of optimizations to strategically push simple and param-
eterized predicates down to SSC. 

 
2 Active Instance Stacks (AIS) in SASE appear similar to PathStacks for 
XML pattern matching [3] in stack arrangements. The stack operations, 
however, differ significantly: the content of an AIS is determined by NFA 
transitions and advanced transition filtering presented throughout this sec-
tion, while the content of a PathStack comes from XML index lookup and 
node comparison. 

4.2.1 Pushing an equivalence test down to SSC  
In RFID-enabled applications, queries commonly use equivalence 
tests to correlate events that refer to, for example, the same RFID 
tag, the same patient, the same medicine, etc. Evaluating such 
predicates in SSC can prevent many unnecessary event sequences 
from being constructed. In the following, we present a scheme for 
pushing one equivalence test down to the sequence scan operator.  

An equivalence test essentially partitions an event stream to 
many small ones; events in each partition have the same value for 
the attribute used in the equivalence test (referred to as the equiva-
lence attribute). One straightforward solution is to partition the 
stream first and then run the query plan bottom-up for each parti-
tion. For better performance, we use an advanced technique, called 
Partitioned Active Instance Stack (PAIS), that provides two bene-
fits: (1) it simultaneously creates the partitions and builds a series 
of active instance stacks for each partition during sequence scan, 
and (2) it incurs no overhead (e.g., partitioning cost) for those 
events whose types are irrelevant to a query.   

The basic idea of PAIS is that at each state, active instances are 
partitioned based on their values of the equivalence attribute; an 
active instance stack is created for active instances in the same 
partition. Furthermore, this stack is connected to the stack in the 
corresponding partition at the previous state using the AIS algo-
rithm in Section 4.1. Figure 4 shows such an arrangement for the 
SSC sub-sequence type and event stream used in the previous ex-
amples. The equivalence test pushed to SSC is on the attribute 
attr1. The value of attr1 in each event is shown below the event in 
the stream. The PAIS algorithm is based on two modifications of 
the AIS algorithm during sequence scan, described as follows:  

Attribute-based transition filtering: At any state except the 
start state, when the NFA decides to make a transition for the cur-
rent event (e.g., transition from state 1 for b6), PAIS retrieves the 
value of the equivalence attribute from the event (e.g., value ‘2’ 
from b6) and checks if the active instance stack in the correspond-
ing partition at the current state (e.g., partition ‘2’ at state 1) is 
empty. A non-empty stack means previous events of the same 
attribute value (e.g., a4) exist, so the transition to the new state is 
necessary. Otherwise, the current event is dropped. 

Stack maintenance: Once a transition is made, the current 
event is added to the active instance stack at the new state based on 
its value (e.g., b6 is added to the stack in partition ‘2’ at state 2), 
and its field of the most recent event at the previous state is set to 
the last instance in the corresponding partition at the previous state 
(e.g., set to a4 for b6).  

With PAIS, sequence construction is only performed in stacks 
in the same partition, producing significantly fewer results. In 
Figure 4, the construction for d9 only produces one event sequence, 
compared to three before.   
4.2.2 Pushing multiple equivalence tests down to SSC  
Queries can contain multiple equivalence tests, for example, to 
correlate events that refer to the same patient taking the same 
medication but at different points in time. Intermediate result sizes 
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can be further reduced if all equivalence tests can be pushed down 
to SSC. A naïve extension to the PAIS algorithm is to create multi-
attribute partitions and build a series of active path stacks for each 
partition. This approach, however, does not scale as the number of 
partitions grows exponentially, incurring high memory overhead 
when the domain size of each equivalence attribute is large. Next, 
we propose two alternative approaches to pushing multiple equiva-
lence tests to SSC without incurring significant memory overhead. 

Eager Filtering in SS→. The first approach, called Multi-
PAIS, pushes all equivalence tests to sequence scan, in hopes to 
filter more events in the “transition filtering” step of the PAIS 
algorithm. For ease of exposition, we consider a simple sub-
sequence type (A, B) and two equivalence tests on attr1 and attr2. 
Figure 5 shows the PAIS arrangement for it: at each NFA state, a 
collection of partitioned active instance stacks, denoted as PAISi, is 
created for each equivalence attribute attri. To understand the con-
tent of these stacks, we describe how the stacks are constructed 
using the Multi-PAIS algorithm: 

Cross-attribute transition filtering: At any state except the start 
state, when the NFA suggests a transition for the current event 
(e.g., a transition for b6 from state 1), the event is filtered by (1) for 
each attri, probing PAISi at the current state (e.g., PAIS1 and PAIS2 
at state 1) and retrieving the relevant stack, denoted as stacki, and 
(2) intersecting all the stacki (i=1, 2, …). A non-empty result of the 
intersection means for the current event (e.g., b6) there is a previ-
ous event (e.g., a3) that matches on all equivalence attributes. In 
the positive case, the transition is made. In the example of Figure 
5, the cross-attribute filtering fails for b5, so it is dropped.  Note 
that b5 can not be filtered if we only have a PAIS over attr1. 

Multi-stack maintenance: At the new state after the transition, 
the current event is added to the appropriate stack in each PAISi for 
attri. For example, at state 2, b6 is added to the stack in partition ‘1’ 
of PAIS1 and the stack in partition ‘3’ of PAIS2.  

Although Multi-PAIS performs aggressive filtering in se-
quence scan, superfluous results can be produced in sequence con-
struction. Here, sequence construction can be run in any of the 
PAISi (i=1, 2, …). Back to the example in Figure 5, no matter 
which PAISi we choose, two event sequences are created for b6, 
although only a3 actually matches b6 on both attr1 and attr2. Take 
PAIS1 for example: b6 is erroneously matched with a1, because 
they have the same value of attr1—this is exactly what PAIS1 tries 
to remember, disregarding the information of other attributes. This 
reveals the problem of “lossy” encoding when multiple PAISs are 
created separately for individual attributes. This problem cannot be 
avoided without creating multi-attribute partitions. As a result, the 
selection operator outside SSC is still needed to filter out the su-
perfluous results created by the Multi-PAIS algorithm. 

Dynamic Filtering in SC←. The second approach, Dynamic 
Filtering, pushes one equivalence test (the most selective one 
when statistics is available) to sequence scan, and then pushes all 
other equivalence tests to sequence construction. These equiva-
lence tests are performed in the search over the DAG embedded in 
the active instance stacks (see Section 4.1). Specifically, if in-
stances on a root-to-leaf path in the DAG have the same values for 
each equivalence attribute, an event sequence is created; otherwise, 
the path is ignored. The further details are omitted here due to 
space constraints. Compared to Multi-PAIS, Dynamic Filtering 
cannot filter as many events in sequence scan, thus having more 
instances in the stacks, but does not need to pay for the overhead of 
cross-attribute transition filtering and multi-stack maintenance. 

SASE can also push simple predicates (i.e., predicates applied 
to individual events) to sequence scan in SSC. The details are 
omitted in the interest of space. 

4.3 Pushing Windows Down 
Similar to predicates, window constraints can also be evaluated 
early in SSC to reduce the number of event sequences created. As 
mentioned in Section 3.2, windows can be pushed to sequence 
construction (SC←) that uses Depth-First-Search (DFS) over a 
DAG contained in the runtime stack. Similarly, when active in-
stance stacks are used, windows can also be dynamically checked 
in the DFS over the DAG embedded in the active instance stacks. 
We call this algorithm Windows in SC. We also offer a technique 
that further pushes windows down to sequence scan (SS→), thus 
referred to as Windows in SS. This technique offers two benefits: 
(1) it performs window-based filtering of events, so fewer events 
are actually added to active instance stacks; and (2) it dynamically 
prunes active instance stacks by removing events that have fallen 
out of the sliding window. The latter is important in stream proc-
essing where runtime data structures need to be pruned to avoid 
memory depletion. We omit the details due to space limitations.  

Windows in SS and Windows in SC can be used together: The 
former filters some of the events so they are not added to active 
instance stacks and prunes expired instances from stacks. The latter 
searches those stacks and performs window checking on-the-fly for 
each event sequence to be generated.  

 

 
Figure 6: An Optimized Plan for Query Q3 

4.4 Putting It All Together  
Now we apply the optimization techniques presented in this sec-
tion to Query Q3 (from Section 3.1). A resulting plan is shown in 
Figure 6. Compared to the basic plan in Figure 1, this plan has the 
following differences: (1) the window operator is pushed to both 
SS→ and SC←, as described above; (2) the equivalence test over 
attr1 (assumed to be the more selective one between attr1 and attr2) 
is pushed down to SS→; (3) the simple predicate A.attr3 = ‘1’ is 
also pushed to SS→; and (4) the equivalence test over attr2 is 
pushed to SC←, instead. Figure 6 also shows a dataflow created 



 

for the event stream at the bottom. Here, SSC in the optimized plan 
only produces two event sequences (as opposed to seven in Figure 
1), so the intermediate result sizes have been greatly reduced. 

5 PERFORMANCE EVALUATION 
In this section, we present a detailed performance analysis of 
SASE. We demonstrate the effectiveness of its query processing 
and optimization techniques. We also compare SASE to a state-of-
the-art stream processor to provide insights into the strengths and 
limitations of different design and implementation strategies. 

5.1 Experimental Setup 
We implemented all the techniques presented in the previous sec-
tions in a Java-based prototype system. All the experiments were 
performed on a workstation with a Pentium III 1.4 Ghz processor 
and 1.5 GB memory running Sun J2RE 1.5 on Fedora Linux 
2.6.12. We set the JVM maximum allocation pool to 1 GB, so that 
virtual memory activity had no influence on the results. 

To test the system, we implemented an event generator that 
creates a stream of events using the parameters shown in Table 1. 
In our experiments, we considered 20 events types and 5 attributes 
for each event type excluding the timestamp. For each attribute, the 
number of possible values this attribute can take (the domain size) 
was chosen from the range [10, 10,000]. We did not consider 
events with more attributes because the additional attributes are not 
used in our queries and can be projected out before entering SASE. 

Table 1: Parameters for event generation 
Parameter Description Values used 
T Number of event types 20 
θ1 Zipf distribution of occurrences of event types 0 
A Number of attributes per event 5 
Vi (i=1…5) Number of values allowed for attribute attri [10, 10,000] 

 

We also created a query generator based on the parameters 
listed in Table 2. Among them, EP specifies the number of equiva-
lence tests (each contains equality comparisons across all events in 
a sequence on a specific attribute), and IP determines the number 
of other parameterized predicates each of which is an inequality 
comparison between two events. The size of the sliding window, 
W, is specified using the number of events. 

Table 2: Parameters for query generation 
Parameter Description Values used 
L Length of the sequence in each query 2-6 
θ2 Zipf distribution of event types in a sequence step 0 
EP Num. of equivalence tests per query 1-2 
IP Num. of other parameterized predicates per query 0-1 
SP Num. of simple predicates per query 0-1 
N Num. of negations in the sequence  0-2 
W Window size 10K-100K 

 

In this study, we define query selectivity as the number of re-
sults generated per event (averaged over a sequence of events). 
Based on probability theory, we derived formulas to approximate 
true query selectivity using our query workload parameters. For 
example, the formula below is for a query with one equivalence 
test over attri and no negations.  

Query Selectivity = (W choose L)/(TL  ∗ Vi
L-1 ∗ W)       (1) 

In our experiments, we used such formulas to choose appropriate 
settings in data and query generation to control query selectivity. 

The performance metric used in all our experiments is 
throughput, that is, the number of events processed per second. In 
each run of an experiment, we used an execution model that 
switches between event generation and event processing, and com-
puted throughput as follows:  

Repeat 

(1) Create a batch of W events based on current configuration; 
(2) Start stopwatch; 
(3) Execute on the current batch; 
(4) Stop stopwatch; 
(5) Compute throughput as an average over the last 6 batches; 
Until throughput converges; 

The criterion for convergence is such that the difference between 
the throughput computed for the current batch and that for the 
previous batch is within a threshold (set to 5%), and this trend 
holds true for 3 successive batches.  

5.2 Optimizations of Sequence Construction 
We begin our study by examining the effectiveness of our optimi-
zation of sequence scan and construction (SSC). We compare two 
algorithms: the Basic algorithm (presented in Section 3.2) that 
constructs event sequences from the runtime stack used by the 
NFA,3 and the AIS algorithm (presented in Section 4.1) that builds 
active instance stacks for sequence construction.  

In this set of experiments, we used the following template for 
creating queries: EVENT SEQ(E1, E2, … , EL) WHERE [attr1] WITHIN 
W, where E1, E2, … EL represent different event types. Each query 
contains a single equivalence test over attribute attr1. In order to 
decouple the impact of optimizations for predicate evaluation from 
this study, we did not evaluate the equivalence test in this set of 
experiments. Instead, we “simulated” the effect of the equivalence 
test on query selectivity by increasing the number of event types 
by a factor of V1

(L-1)/L (derived from formula (1)). Predicate 
evaluation is the focus of the next set of experiments. We pushed 
windows down to SSC for their evaluation. 

Experiment 1-Varying domain size V1. In the first experi-
ment, we considered a modest window size of 10,000, and exam-
ined the performance of the two algorithms as the query processing 
load varies within the fixed window. To do so, we fixed the path 
length at 3, and varied the domain size V1 of attr1 (used in the 
equivalence test) from 100 to 10,000.  In this range, the query se-
lectivity decreases from 0.2 (one result every 5 events, an ex-
tremely high number) to 0.2x10-4 (one result every 50,000 events). 

Figure 8 shows the throughput results of the two algorithms. 
Note that the X-axis is presented in a logarithmic scale. As can be 
seen, AIS outperforms Basic by a large factor when the domain 
size is relatively small, e.g., x18 at the point of 100. In the range of 
small domain sizes, sequence construction is invoked frequently 
and significant numbers of results are generated in each invocation. 
As Basic has a cost proportional to the window size for sequence 
construction, frequent sequence construction magnifies its over-
head. AIS avoids this problem by using active instance stacks, 
resulting in remarkably improved performance. As the domain size 
increases, both algorithms improve, because the number of query 
results decreases. They become close at the point of 10,000 where 
less than 1 result is created over each period of 10,000 events. 

Experiment 2-Varying window size W: In this experiment, 
we investigate each algorithm’s sensitivity to large window sizes. 
We fixed V1 at 10,000 and L at 3, and varied W from 10,000 up to 
100,000. As we set V1 large, query selectivity is high and W only 
has a modest impact on it, e.g., from 0.2x10-4  to 0.2x10-2.  

The results are shown in Figure 9. As W increases, the Basic 
algorithm decreases its throughput much faster than the AIS algo-
rithm. The reasons are two-fold. First, sequence construction in 
Basic incurs a cost linear to W, whereas AIS searches a DAG em-
bedded in the active instance stacks, whose depth is only L. Sec-
ond, the runtime stack that Basic uses grows large with increasing 

                                                           
3 The basic algorithm is an improved version of YFilter [11]. Although we 
did not directly compare to YFilter, the results reported here provide in-
sights into the performance gains that SASE may have over YFilter.  



 

values of W, causing significant memory overhead. With active 
instance stacks, AIS eliminates the need of using the runtime stack 
other than the top element for the most recent event, thus avoiding 
the penalty of excessive memory usage.    

5.3 Optimizations for Predicate Evaluation 
In this set of experiments, we evaluate the effectiveness of our 
techniques for pushing predicates down to SSC to reduce interme-
diate result sizes. For query generation, we added various predi-
cates to the basic template: EVENT SEQ(E1, E2, E3) WHERE [attr1] 
WITHIN 10000. We used AIS for sequence construction and pushed 
windows down to SSC in all these experiments. 

In an initial experiment, we evaluated the PAIS algorithm (as 
described in Section 4.2.1) for pushing the first equivalence test 
down to the sequence scan operator (SS→) in SSC. We compared 
it to a basic query plan that evaluates predicates in the selection 
operator outside SSC. The latter actually could not complete the 
experiment as it created too many (e.g., hundreds of millions of) 
intermediate results. These initial results show that pushing at least 
one equivalence test down to SSC is a must. In the following, we 
investigate the efficient evaluation of additional predicates. 

Experiment 3-Two equivalence tests: In this experiment, we 
added a second equivalence test [attr2] to the basic query template, 
and compared three strategies to evaluate it: (1) evaluating it in 
Selection outside SSC, (2) pushing it all the way down to sequence 
scan (SS→) using the Multi-PAIS algorithm (see 4.2.2), and (3) 
pushing it down to sequence construction (SC←) using the Dy-
namic Filtering algorithm (also see Section 4.2.2). Assuming that 
we can push the more selective equivalence test down to SS→ 
(when statistics is available), this experiment seeks a strategy ap-
propriate for the second equivalence test corresponding to the se-
lectivity of the first one already pushed down. To do so, we varied 
V1 (domain size of attr1) from 10 to 10000 while fixing V2 (domain 
size of the attr2) at 20 or 5. In the healthcare scenario, for example, 
V1 would be for the patient name and V2 for the medicine name. 

The results for V2=20 are reported in Figure 10(a). Again the 
X-axis is in a logarithmic scale. This figure shows that Dynamic 
Filtering outperforms the other two by a wide margin when the 
domain size V1 is relatively small (e.g., ≤500). Surprisingly, by 
doing eager filtering in SS→, Multi-PAIS yields throughput even 
worse than Selection. As V1 increases, the difference among three 
algorithms decreases, as the query selectivity increases. After the 
point of 500, three algorithms perform similarly.  

The results for small values of V1 are of particular interest. 
Two factors contribute to these results. First, in sequence scan, 
Dynamic Filtering and Selection only evaluate the 1st equivalence 
test, while Multi-PAIS also evaluates the 2nd equivalence test. By 
doing so, Multi-PAIS reduces the number of invocations of se-
quence construction (as verified by our profiling results), but at an 
extra cost that does not exist in the other two algorithms. Second, 
in sequence construction, Multi-PAIS actually creates much more 
results than Dynamic Filtering (but somewhat less than Selection), 
despite a lower number of invocations. For example, Figure 10(b) 
shows the actual number of results (in a logarithmic scale) created 
over a period of 10000 events. Due to the lossiness of its stack 
encoding, Multi-PAIS creates many superfluous results, as dis-
cussed in Section 4.2.2. In contrast, Dynamic Filtering can filter 
out many unnecessary results during sequence construction. Com-
bining both factors, Dynamic Filtering performs the best, and 
Multi-PAIS is the worst. The overhead of Multi-PAIS is magnified 
in the case of V2=5 where the 2nd equivalence test is less selective. 
Details are omitted here in the interest of space. 

The results of this experiment imply that if we push down the 
more selective equivalence test, say [attr1], to SS→, there are two 

main cases to consider for [attr2]: If [attr1] is selective, we can use 
any strategy for [attr2]. Otherwise, pushing the even less selective 
[attr2] to SS→ is not effective; instead, a better way is to evaluate it 
dynamically in SC←. Therefore, we always use Dynamic Filtering 
for the 2nd equivalence test in the following experiments. 

Experiment 4-Adding more predicates: In the next experi-
ment, we further added simple and generic parameterized predi-
cates. Due to space constraints, we only summarize the results 
here: Pushing down simple predicates always helps reduce inter-
mediate results, thus improving throughput. Once equivalence tests 
and simple predicates are pushed to SSC, evaluating other param-
eterized predicates in Selection incurs little overhead. 

Other experiments. We also ran experiments to evaluate the 
techniques for handling windows and negations. We omit details of 
these experiments in the interest of space. In summary, pushing 
windows down to both sequence scan and sequence construction is 
effective in reducing intermediate results. The cost of processing 
negation is modest when the intermediate result sizes are small, 
and can become more significant otherwise. This suggests that we 
might even consider pushing negation down to SSC.    

In the rest of this section, SASE was configured based on the 
results reported in the above experiments: Specifically, it uses 
Active Instance Stacks for sequence construction; for typical que-
ries such as query Q3, it pushes equivalence tests, simple predi-
cates, and windows down to SSC, as illustrated in Figure 6. 

5.4 Comparison to TelegraphCQ 
In this section, we compare SASE to a relational stream processor, 
TelegraphCQ (TCQ) [7], developed at the University of California, 
Berkeley. We chose to compare to TCQ because it is a full-fledged 
stream processor with the software publicly available. In addition, 
TCQ has a well-supported user community, which facilitated this 
comparative study.  

As TCQ does not support negation, we used a relatively simple 
template for query generation: EVENT SEQ(E1, E2, … , EL) WHERE 
[attr1 (, attr2)?] WITHIN W. Queries were created based on specific 
settings of L, W, V1 (domain sizes of attr1), and V2 (domain size of 
attr2), if used. Then, each event query was translated to the TCQ 
language. For example, a query created with L=3, W=10,000, and 
one equivalence test [attr1] can be expressed in TCQ as: 

WITH 
R AS        (SELECT * FROM ES e WHERE e.event = ‘E1’) 
S AS        (SELECT * FROM ES e WHERE e.event = ‘E2’) 
T AS        (SELECT * FROM ES e WHERE e.event = ‘E3’) 
(SELECT  * 
  FROM    R r [RANGE BY 10000] 

                    S s [RANGE BY 10000] 
                    T t [RANGE BY 10000] 

 WHERE   r.attr1 = s.attr1 AND r.attr1 = t.attr1 AND  
               s.time > r.time AND t.time > s.time) 

The TCQ query first uses the WITH clause to create separate 
streams for event types E1, E2, and E3 (referred to as event type 
streams). It then uses SELECT-FROM-WHERE to express the event 
sequence. In the FROM clause, it applies a RANGE BY construct to 
each event type stream; the sliding window over the event se-
quence is automatically captured by having ranges of the window 
size in each stream. The WHERE clause specifies the equivalence 
test and the temporal order of E1, E2, and E3 as join predicates.  

We set up the TCQ system as follows. We first confirmed that 
although the TCQ server spans multiple processes, all query proc-
essing takes place in a single backend process. Based on this, we 
plugged in our code to only measure the performance of the query 
processing backend. We also turned off inter-process communica-
tion to make sure that such activity had no effect on our results. 
Moreover, we made efforts to help TCQ choose the best plan when 
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multiple join predicates are available; we achieved this by provid-
ing hints on the most selective join predicate to the optimizer. 

The performance metric is still throughput. However, as TCQ 
and SASE differ significantly in architecture and implementation 
platform, we do not directly report those numbers in this study. 
Instead, we report on “normalized throughput” obtained as fol-
lows: as the query processing load changes from light to heavy in 
each experiment, we use the throughput for the lightest workload 
to normalize other measurements (thus they are all under 1). This 
approach not only ensures a fair comparison but also allows us to 
gain insights into tradeoffs between various evaluation strategies.   

Experiment 5-Varying sequence length L. In this experi-
ment, we investigate each system’s sensitivity to the sequence 
length by varying L from 2 to 6. We used one equivalence test over 
attr1 with V1=100 (larger values of V1 tend to produce no results 
for long sequences). W was set to 10,000.  

The results are shown in Figure 11. It can be clearly seen that 
as L increases, SASE scales much better than TCQ. Specifically, 
TCQ experiences a sharp drop from L=2 to L=3 and degrades to 
less than 0.01 when L≥5. In contrast, SASE decreases more grace-
fully and reaches 0.5 with L=6. These results can be explained as 
follows. As in most stream processors, TCQ uses an n-way join to 
handle an equivalence test over an event sequence. This certainly 
incurs high overhead when the sequence length is high. Moreover, 
TCQ only considers equality comparisons in joins. Therefore, tem-
poral constraints for sequencing, e.g., “s.time > r.time”, are evalu-
ated only after the join. In contrast, SASE uses the NFA to natu-
rally capture sequencing of events, and the PAIS algorithm to han-
dle the equivalence test during NFA execution, yielding much 
better scalability.  

Experiment 6-Varying domain size V1. In this experiment, 
we compare the performance of SASE and TCQ as query selectiv-
ity varies. We set L to 3 and W to 10,000. We first used one 
equivalence test over attr1 and varied the domain size of attr1 (V1) 
from 10 to 10,000. The results are shown by the two curves labeled 
with “1 equiv” in Figure 12. Note that the measurements were 
normalized using the throughput for the rightmost point (e.g., 
10,000). Figure 12 shows that as V1 decreases from 10,000 to 10 
(from right to left), the performance of TCQ drops much faster 
than SASE. The benefit of SASE over TCQ stems from its ability 

to prune more intermediate results. In particular, in the bottom 
sequence scan operator, SASE uses the NFA to check sequencing 
of events and the PAIS algorithm inlined with the NFA execution 
to perform the equivalence test. In contrast, by using a 3-way join 
and postponing the evaluation of temporal constraints, TCQ suffers 
from significantly increased intermediate results sizes.  

We further added a second equivalence test [attr2] to investi-
gate how the two systems would utilize it. The domain size of attr2 
(V2) was set to 20. The results are shown by the curves labeled 
with “2 equivs” in Figure 12. Both systems perform better now: 
SASE significantly improves its performance especially when V1 
is relatively small, whereas the performance gain of TCQ is rather 
limited. SASE’s behavior is attributed to pushing the second 
equivalence test down to sequence construction, which signifi-
cantly reduces the number of event sequences that it generates. The 
way that TCQ handles the second equivalence test is to apply its 
equality comparisons as selection filters after the corresponding 
joins for the first equivalence test. In the case of a 3-way join 
among R, S and T over attr1, assuming that R and S are joined first, 
the TCQ optimizer is often able to push the filter R.attr2 = S.attr2 
right after the join between R and S, thus reducing the work to be 
done by the join between S and T. This technique is shown to be 
less effective than the Dynamic Filtering algorithm in SASE that 
pushes the entire second equivalence test down to SSC. 

The above results imply that a relational stream processor such 
as TCQ is not designed or optimized for complex event processing. 
The approach that SASE takes, in particular, using native operators 
to handle event sequences and highly optimized plans to reduce 
intermediate result sizes, is indeed necessary. The above results 
also prove the specific techniques that SASE uses to be effective 
and scalable for complex event processing. 

6 RELATED WORK 
Much related work has been covered in the previous sections. We 
briefly discuss other related work in a broader set of areas below. 

Publish/Subscribe. Traditional publish/subscribe systems [1] 
[5][12][25] provide predicate-based filtering of individual events. 
SASE significantly extends these systems with the ability to handle 
correlations among events and transform primitive events into new 
composite events. Recent work on advanced pub/sub [10] offers an 



 

expressive language to specify subscriptions spanning multiple 
events, similar to the language in SASE. In comparison, it supports 
negation in a limited way. Its implementation, based on an NFA-
based mechanism, focuses on multi-query optimization but has not 
addressed issues related to creating composite events as final re-
sults and managing intermediate results, whereas SASE uses a 
large suite of techniques to handle them for good performance. 

Sequence databases. SQL-style languages have been pro-
posed to support order in data with a new data model and an order-
aware algebra [20], and to support sequence queries that perform 
time series operations such as computing running aggregates 
[27][28]. These languages do not offer flexible use of negation. 
The SEQ system [28] uses relational techniques to implement se-
quence queries, whereas SASE uses an NFA-based mechanism and 
many optimizations in this framework to handle event sequences.  

Event Processors. A few event processors have been recently 
developed. CompAS [18] provides a holistic approach to filtering 
primitive events and detecting composite events. HiFi [13] aggre-
gates events along a tree-structured network on various temporal 
and geographic scales and has limited support for complete event 
processing [26]. Siemens RFID middleware [29] offers a temporal 
data model and declarative rules for managing RFID data but no 
solid implementation. These systems lack the expressiveness to 
support our target applications and optimizations for high-volume 
event processing. 

7 CONCLUSIONS AND FUTURE WORK 
In this paper, we presented SASE, a complex event processing 
system that efficiently executes monitoring queries over streams of 
RFID readings. We first proposed a complex event language that 
allows queries to filter and correlate events and transform the rele-
vant ones into new composite events for output. The language 
provides features such as sequencing, negation, parameterization, 
and windowing necessary for emerging RFID-based monitoring 
applications. We then presented a query plan-based approach to 
implementing this language, which uses native operators to con-
struct event sequences while leveraging relational techniques for 
other processing tasks. We also described a large set of optimiza-
tions for handling large windows and reducing intermediate result 
sizes. We demonstrated the effectiveness of SASE in a detailed 
performance study. Results of this study show that SASE can 
process 40,000 events per second for a highly complex query in a 
Java-based implementation. Results obtained from a  comparison 
between SASE and a state-of-the-art stream processor confirm that 
SASE’s native sequence operators and optimized plans provide 
much better scalability for demanding workloads.   

We plan to continue our research in the following directions. 
First, we will extend our language by adding aggregates and ex-
plore issues related to compositionality. Second, it will be useful to 
compare SASE to recently developed advanced pub/sub and event 
processing systems for insights into the strengths of each approach. 
Finally, for deployment in RFID-based applications, we will also 
enhance SASE with support for simultaneous queries, disk-based 
indexing of events, and distributed event processing.  
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