

High-Performance Complex Event Processing over Streams

Eugene Wu
Computer Science Division

University of California, Berkeley
sirrice@berkeley.edu

Yanlei Diao
Department of Computer Science

University of Massachusetts Amherst
yanlei@cs.umass.edu

Shariq Rizvi*
Google Inc.

Mountain View, CA
rizvi@google.com

ABSTRACT
In this paper, we present the design, implementation, and evalua-
tion of a system that executes complex event queries over real-time
streams of RFID readings encoded as events. These complex event
queries filter and correlate events to match specific patterns, and
transform the relevant events into new composite events for the use
of external monitoring applications. Stream-based execution of
these queries enables time-critical actions to be taken in environ-
ments such as supply chain management, surveillance and facility
management, healthcare, etc. We first propose a complex event
language that significantly extends existing event languages to
meet the needs of a range of RFID-enabled monitoring applica-
tions. We then describe a query plan-based approach to efficiently
implementing this language. Our approach uses native operators to
efficiently handle query-defined sequences, which are a key com-
ponent of complex event processing, and pipelines such sequences
to subsequent operators that are built by leveraging relational tech-
niques. We also develop a large suite of optimization techniques to
address challenges such as large sliding windows and intermediate
result sizes. We demonstrate the effectiveness of our approach
through a detailed performance analysis of our prototype imple-
mentation as well as through a comparison to a state-of-the-art
stream processor.

1 INTRODUCTION
Sensor devices such as wireless motes and RFID (Radio Fre-
quency Identification) readers are gaining adoption on an increas-
ing scale for tracking and monitoring purposes. Wide deployment
of these devices will soon generate an unprecedented volume of
events. An emerging class of applications such as supply chain
management [14], surveillance and facility management [18],
healthcare [14], tracking in the library [26], and environmental
monitoring [8] require such events to be filtered and correlated for
complex pattern detection and transformed to new events that
reach a semantic level appropriate for end applications. These re-
quirements constitute a distinct class of queries that perform real-
time translation of data describing a physical world into informa-
tion useful to end applications.

An expressive, user-friendly language is needed to support this
class of queries for complex event processing. For a concrete ex-
ample, consider shoplifting detection in a retail store; a query ac-
complishing this consists of a sequence of events that describe the
scenario where an item was picked up at a shelf and then taken out

of the store without being checked out. Complex event queries like
this can address both occurrences and non-occurrences of events,
and impose temporal constraints (e.g., order of occurrences and
sliding windows) as well as value-based constraints over these
events. Publish/subscribe systems [1][5][12][25] focus mostly on
subject or predicate-based filters over individual events. Languages
for stream processing [2][7][19] lack constructs to address non-
occurrences of events and become unwieldy for specifying com-
plex order-oriented constraints. Complex event languages [4][6]
[15][16][22][30] developed for active database systems lack sup-
port for sliding windows and value-based comparisons between
events. While it is not our intention to design a brand new lan-
guage in this work, we leverage existing complex event languages
with substantial extensions to address the needs of a wide range of
monitoring applications using RFID technology.

Given a suitable language, it is imperative that queries ex-
pressed in this language be efficiently executed to meet demanding
performance requirements. Most work on complex event languages
in the area of active databases lacks implementation details. Stream
processing systems in the relational setting [7][9][19][24] are not
optimized for complex event processing, whereas event processing
systems very recently developed [18][26][29] have not focused on
fast implementations. In this work, we investigate a fast implemen-
tation of our proposed language. In particular, we address two
challenges that arise in the context of large-scale event processing:
• High volume streams: The volume of events generated by large

deployments of receptors can reach thousands of events per
second or higher. For example, a retail management system set
up for a large store receives events whenever items are moved
from or to the backroom, placed on or picked from a shelf, pur-
chased, or taken out of the store. Complex event processing
must be able to keep up with such high-volume event streams.

• Extracting events from large windows: Event monitoring appli-
cations often apply a sliding window (e.g., within the past 12
hours) to a sequence of events of interest. In many scenarios,
such windows are large and the events relevant to a query are
widely dispersed with others across the window. Unlike simple
event detection that reports only the satisfaction of a query but
not how, extracting relevant events to create all possible results
causes significant increase in processing complexity.
In this paper, we present SASE, an event processing system

that executes complex event queries over real-time streams of
RFID readings. These complex event queries filter and correlate
events to match specific patterns, and transform the relevant events
into new events for the use of external monitoring applications.
Stream-based execution of these queries allows a monitoring ap-
plication to be notified immediately when all relevant events have
been received; as a result, time critical actions can be taken to pre-
vent loss in value and mitigate harm to life, property or the envi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

* The work was done when the author was at the University of California,
Berkeley.

SIGMOD 2006 June 27-29, 2006, Chicago, Illinois, USA
Copyright 2006 ACM 1-59593-256-9/06/0006 …$5.00.

ronment. Specifically, we make the following contributions:
1. We propose a complex event language that significantly ex-

tends existing event languages [6][30] to meet the needs of
RFID-enabled monitoring applications. The extensions include
flexible use of negation in sequences, parameterized predicates,
and sliding windows. The language is compact and amenable
to fast implementation, as we demonstrate in this work.

2. We develop a query plan-based approach to implementing the
language. This approach is based on a new abstraction of com-
plex event processing, i.e., a dataflow paradigm with native se-
quence operators at the bottom, pipelining query-defined se-
quences to subsequent relational style operators. This abstrac-
tion is in sharp contrast to the implementation models of exist-
ing event systems based on fixed data structures such as finite
automata [16], trees [6], or Petri nets [15]. The abstraction also
differs from stream systems in that it uses native sequence op-
erators (rather than joins) to handle query-defined sequences.

3. The new abstraction of complex event processing enables us to
explore alternatives to optimize for two salient issues that arise
in event processing over streams: large windows and large in-
termediate result sizes. We develop intra-operator optimiza-
tions to expedite sequence operations in the presence of large
windows, and inter-operator optimizations that strategically
push predicates and window constraints down to sequence op-
erators to reduce intermediate result sizes.

4. We demonstrate the effectiveness of the above techniques
through a detailed performance study using a range of data and
query workloads. We also compare SASE to a state-of-the-art
stream processor. The results of the latter study verify the need
for using native sequence operators and highly optimized query
plans for high-performance complex event processing.
The remainder of the paper is organized as follows. We de-

scribe a complex event language in Section 2. We present an over-
view of a query plan-based approach in Section 3 and a large suite
of optimization techniques in Section 4. We report on the results of
a detailed performance study in Section 5. Section 6 covers related
work. Section 7 concludes the paper.

2 A COMPLEX EVENT LANGUAGE
In this section, we present the complex event language that SASE
uses, and illustrate how this language can be used to support a
range of emerging RFID-based applications.

2.1 Event Model
We first describe an event model that serves as a basis for the lan-
guage we define in the next subsection. In this model, the input to
an event processing system is an infinite sequence of events, which
is referred to as an event stream. An event represents an instanta-
neous and atomic (i.e., happens completely or not at all) occur-
rence of interest at a point in time [6]. Similar to the distinction
between types and instances in database systems and programming
languages, our model includes event types that describe a set of
attributes that a class of events must contain. Each event, denoted
by a lower-case letter (e.g., ‘a’), consists of the name of its type,
denoted by an upper-case letter (e.g., ‘A’), and a set of values cor-
responding to the attributes defined in the type.

Each event is assigned a timestamp from a discrete ordered
time domain. We assume that such timestamps are assigned by a
separate mechanism before events enter the event processing sys-
tem and that they reflect the true order of the occurrences of these
events. Furthermore, we assume that events are totally-ordered.
This latter assumption, which may not be true in all scenarios, is
acceptable in our target applications and allows us to focus on the
language and processing issues critical to those applications. Sup-
port for concurrent events will be addressed in our future work.

2.2 SASE Event Language
The SASE event language is a declarative language that combines
filtering, correlation, and transformation of events: it can be used
to specify how individual events are filtered, how multiple events
are correlated via time-based and value-based constraints, and how
query answers are constructed from the correlated events. In the
following, we survey the language and define its formal semantics.
2.2.1 Overview of the Language
The overall structure of the SASE language is:

EVENT <event pattern>
[WHERE <qualification>]
[WITHIN <window>]

We now explain the various constructs using examples drawn from
an RFID-based retail management scenario: A RFID tag is at-
tached to every product in a retail store. RFID readers are installed
above the shelves, checkout counters, and exits. A reader generates
a reading if a product is in its read range. In our examples, we as-
sume that readings at the shelves, checkout counters, and exits are
represented as events of three distinct types.

The first query (Q1) retrieves readings at a shelf about a prod-
uct whose category is food and whose manufacturer has id ‘1’. In
this query, the EVENT clause contains an event type test “SHELF-
READING” that retrieves the events of the SHELF-READING type
from the input stream. The WHERE clause further filters those
events by evaluating two predicates applied to their attributes: the
first predicate requires the value of the attribute category to be
‘food’ and the second requires the value of the attribute manufac-
turer_id to be ‘1’. In general, the WHERE clause can be a boolean
combination (using logical connectives ∧ and ∨) of predicates that
use one of the six comparison operators (=, ≠, >, <, ≥, ≤).
Q1: EVENT SHELF-READING

WHERE category = ‘food’ ∧ manufacturer_id = ‘1’
The second query (Q2) detects shoplifting activity: it reports

items that were picked at a shelf and then taken out of the store
without being checked out. The EVENT clause of this query con-
tains a SEQ construct that specifies a sequence in particular order;
the components of the sequence are the occurrences and non-
occurrences of events of interest. In this query, the SEQ construct
specifies a sequence that consists of the occurrence of a SHELF-
READING event followed by the non-occurrence of a COUNTER-
READING event followed by the occurrence of an EXIT-READING
event. Non-occurrences of events, also referred to as negation in
this work, are expressed using the ‘!’ sign. For the use of subse-
quent clauses, the SEQ construct also includes a variable in each
sequence component to refer to the corresponding event.

The WHERE clause of Q2 uses the variables defined previously
to form predicates that compare attributes of different events. To
distinguish from simple predicates that compare to a constant like
those in Q1, we refer to such predicates as parameterized predi-
cates as the attribute of the later event addressed in the predicate is
compared to a value that an earlier event provides (a similar notion
was proposed in [10]). The parameterized predicates in this query
compare the id attributes of all three events in the SEQ construct for
equality. Equality comparisons on a common attribute across an
entire event sequence are typical in RFID-based applications. For
ease of exposition, we refer to the common attribute used for this
purpose as an equivalence attribute, and the set of equality com-
parisons on this attribute as an equivalence test. Our language
offers a shorthand notation: an equivalence test on an attribute
(e.g., id) can be simply expressed by enclosing the attribute name
in a pair of square brackets (e.g., [id], as shown in the comment on
the WHERE clause in Q2). Moreover, if an equivalence test further

requires all events to have a specific value (e.g., ‘1’) for the attrib-
ute id, we can express it as [id=‘1’].

Finally, the query Q2 also contains a WITHIN clause to specify a
time period, e.g., 12 hours, in which the events of interest must
occur. In our language, the time period is expressed as a sliding
window, as in most stream languages.
Q2: EVENT SEQ(SHELF-READING x, ! (COUNTER-READING y),

EXIT-READING z)
WHERE x.id = y.id ∧ x.id = z.id /* or equivalently, [id] */
WITHIN 12 hours
Summary of language features. The above examples demon-

strate the use of the constructs of our language. As stated previ-
ously, our language draws on complex event languages [4][6][16]
[22][30] developed for active databases. In comparison, it supports
not only basic constructs such as sequence and negation that exist-
ing event languages have, but also crucial new features that many
emerging applications require. In particular, our language:
• offers flexible use of negation in event sequences, a significant

extension to any existing event language supporting negation;
• adds parameterized predicates for correlating events via value-

based constraints;
• includes sliding windows for imposing additional temporal

constraints; and
• resolves the semantic subtlety of negation when used together

with sliding windows, which none of the prior work considers.
The addition of these features enables our language to capture a
wide variety of event correlations.

Output. Given a sequence of events as input, the output of a
SASE query is also a sequence of events. Each result event repre-
sents a unique match of the query. Take the query Q2 for example.
A result is created for Q2 if a SHELF-READING event and an EXIT-
READING event satisfy the SEQ construct as well as the WHERE and
WITHIN clauses. These two input events represent a unique match
of the query, hence called the matching component events of the
query. For each unique match of the query, the result event con-
tains the concatenation of all the attributes of those matching com-
ponent events. As such, a result event provides all necessary in-
formation that monitoring applications may require for conducting
further actions. Unlike previous work that focuses on complex
event “detection” (i.e., only reporting that an event query is satis-
fied but not how) [6][15][16][18], we explicitly report what events
are used to match the query. This significantly increases the com-
plexity of query processing, as we shall show in Sections 3 and 4.

In the rest of the paper, we refer to an event in an input se-
quence as a primitive event, and one in an output sequence as a
composite event, as it is composed from a few input events. It is
worth noting that the design of the SASE language follows our
vision of a fully compositional language−the language would allow
the output of a query to be used as input to another. The fact that a
SASE query takes a sequence of (primitive) events and produces a
sequence of (composite) events enables an extension to full com-
positionality. This extension is further discussed in Section 2.4.
2.2.2 Formal Semantics
We formally define the semantics of our language by translating its
language constructs to algebraic query expressions. To begin with,
each event type Ai is a query expression. An event operator con-
nects a number of query expressions to form a new expression.
Semantics is added to a query expression by treating it as a func-
tion mapping the underlying discrete time domain onto the boolean
values True or False (similar to [6]). For example, the semantics of
a base expression Ai, represented as Ai(t), is that at a given point t
in time, Ai(t) is True if an Ai type event occurred at t, and is False
otherwise. Below, we describe the set of operators that SASE sup-
ports and the semantics of expressions that they form.

ANY operator. The ANY operator can be used in the EVENT
clause of a query. It takes a set of event types as input and evalu-
ates to True if an event of any of these types occurs. Formally, it is
defined as follows:
ANY(A1, A2, …, An) (t) ≡ ∃ 1≤i≤ n Ai(t)
It outputs the event that occurred at time t as a result.

SEQ_ operator. In the absence of negation, a SEQ construct in
the EVENT clause is translated to an expression with a SEQ_ opera-
tor. SEQ_ takes a list of n (n>1) event types as its parameters, e.g.,
SEQ_(A1, A2, …, An). It specifies a particular order in which the
events of interest should occur. It, however, allows an arbitrary
number of events to appear between the two events addressed by
two consecutive parameters. This operator is formally defined as:
SEQ_(A1, A2, …, An) (t) ≡ ∃ t1<t2<…<tn=t A1(t1)∧A2(t2) ∧…∧An(tn)
The ANY operator can be used inside the SEQ construct, e.g.,
SEQ(A1, ANY(A21, …, A2m), …). The semantics of the corresponding
expression can be defined by combining the semantics of SEQ_ and
ANY. The definition is omitted in this paper in the interest of space.

A result created by SEQ_ contains the concatenation of all the
attributes of the matching component events of the sequence.

SEQ_WITHOUT operator. In the presence of negation, a SEQ
construct in the EVENT clause is translated into an expression using
a SEQ_WITHOUT operator. Let S1 denote A11, …, A1m and S2 denote
A21, …, A2n. When these event types are used in the SEQ construct
without the ‘!’ symbol, we refer to them as positive components of
SEQ_WITHOUT. Let {B} denote an event type that is not allowed to
appear, referred to as a negative component of SEQ_WITHOUT.
SEQ_WITHOUT(S1, {B}, S2) (t) ≡ ∃ t11<…<t1m<t21<…<t2n=t

A11(t11)∧…∧A1m(t1m)∧A21(t21)∧…∧A2n(t2n)∧(∀ti∈(t1m, t21) ¬B(ti))
This operator specifies that no event of the B type can appear be-
tween the two event sequences S1 and S2.

There are two special cases of SEQ_WITHOUT. The first case, re-
ferred to as negated start, disallows any event of the B type to
appear before the event sequence S2, which is denoted as
SEQ_WITHOUT({B}, S2). The second case, negated end, disallows
any event of the B type to appear after the event sequence S1, de-
noted as SEQ_WITHOUT(S1, {B}). These two cases are of practical use
only when used in combination with the WITHIN clause. Their defini-
tions are postponed until we present the definition of WITHIN.

More general cases of SEQ_WITHOUT include: (1) a negative
component can be a single event type or a set of event types con-
nected using an ANY operator, and (2) negative components can be
arbitrarily interleaved with positive components. Due to space
constraints, we omit formal definitions of these cases in this paper.

A result created by SEQ_WITHOUT only includes attributes of
the events that match the positive components of SEQ_WITHOUT;
negative components do not contribute to the content of the result.

Selection operator. Recall that the WHERE clause of a query is
boolean combination (using ∧ and ∨) of simple and parameterized
predicates. This clause is translated to an expression with a selec-
tion operator (σ). The semantics of the expression is defined for
two cases: SEQ_ and SEQ_WITHIN. For SEQ_(A1, …, An), assume that
variables x1, …, xn refer to the respective events in the sequence.
With negation, e.g., SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n),
an additional variable xb is used to refer to each negative compo-
nent. Let Ρ denote a set of predicates connected using ∧ and ∨.

A selection operator applied to SEQ_ can be defined as:
σ(SEQ_(A1, …, An), Ρ) (t) ≡ ∃ t1< …<tn=t A1(t1)∧…∧An(tn) ∧ (Ρ)
Note that if Ρ contains a predicate referring to the xi.aj attribute but
the event denoted by xi does not contain an aj attribute, the predi-
cate evaluates to True by definition in our language. This is de-
signed to accommodate ANY operators used in the SEQ construct.

To define σ for SEQ_WITHOUT, we rewrite Ρ into a disjunctive
normal form Ρ1∨…∨Ρp with each Ρi representing a conjunction of
predicates. We further rewrite Ρi as Ρi+∧Ρi-, with Ρi+ denoting the
conjunction of those predicates that do not involve a variable refer-
ring to a negative component, and Ρi- representing the rest. Then σ
applied to SEQ_WITHOUT can be defined as follows:
σ(SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n), Ρ) (t) ≡

σ(SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n), Ρ1+∧Ρ1-) (t) ∨…
σ(SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n), Ρp+∧Ρp-) (t)

σ(SEQ_WITHOUT(A11, …, A1m, {B}, A21, …, A2n), Ρi+∧Ρi-) (t) ≡
∃ t11< …<t1m<t21<…<t2n=t
 A11(t11)∧…∧A1m(t1m)∧A21(t21)∧…∧A2n(t2n) ∧ (Ρi+) ∧
 ∀ti∈(t1m, t21) ¬(B (ti) ∧ (Ρi-))
WITHIN_ operator. The WITHIN clause of a query is translated

using a WITHIN_ operator. This operator requires the specified
event or event sequence to occur within a window T. Formally, it
is defined for SEQ_ and SEQ_WITHOUT as follows:
WITHIN_(SEQ_(A1, …, An), T) (t) ≡ ∃ t-T<t1<…<tn=t A1(t1)∧…∧An(tn)
WITHIN_(SEQ_WITHOUT(S1, {B}, S2), T) (t) ≡

∃ t-T<t11…<t1m<t21<…<t2n=t
A11(t11)∧…∧A1m(t1m)∧A21(t21)∧…∧A2n(t2n)∧(∀ti∈(t1m, t21)¬B (ti))
Definitions are also given below for the two special cases of

SEQ_WITHOUT, namely, negated start and negated end:
WITHIN_(SEQ_WITHOUT({B}, S2), T) (t) ≡ ∃ t-T<t21<…<t2n=t

A21(t21)∧…∧A2n(t2n)∧(∀ti∈(t-T, t21) ¬B (ti))
WITHIN_(SEQ_WITHOUT(S1, {B}), T) (t) ≡ ∃ t-T+1=t11<…<t1m<t

A11(t11)∧…∧A1m(t1m) ∧(∀ti∈(t1m, t] ¬BB (ti))
It is important to note our special treatment of negated end when
WITHIN is applied: the first event in S1 is required to occur at time
t-T+1. We add this constraint to avoid anomalies. Take “WITHIN_(
SEQ_WITHOUT(A, {B}), T)” for example. Without the constraint
that a type A event must occur at t-T+1, the query can be satisfied
by any A event not immediately followed by a B event, because we
can simply choose t as the point in time right after the A event to
satisfy the query. As we expect such matches to be uninteresting to
most users, we add this additional constraint to ensure that an A
event occurred at t-T+1 and no B event followed it until time t.

A final note is that in the absence of negation, a WITHIN clause
can be expressed using a predicate, i.e., the difference in time be-
tween the first and last events of a sequence is within T. With ne-
gation, especially negated start and end, a WITHIN clause can no
longer be expressed using a predicate; a WITHIN_ operator as de-
fined above is needed to capture the correct semantics.

2.3 Example Applications
In the previous section, we illustrated our language using two ex-
amples. Our language is in fact suitable for many tasks in retail
management [14] and a wide range of applications including
healthcare [14], surveillance and facility management [18], envi-
ronmental monitoring [8], network security [23], etc. In the follow-
ing, we demonstrate the expressiveness of our language using more
examples from retail management and healthcare:

Retail management. Besides shoplifting, another important
task in retail management is handling misplaced inventory [14],
which currently takes an immense amount of time of retail person-
nel. The combination of RFID technology and our event language
provides a means to automate this process, saving tremendous
human effort as well as expediting shelf replenishment. A query
handling misplaced inventory can be written in our language as:

EVENT SEQ(SHELF-READING x, SHELF-READING y,
 ! (ANY(COUNTER- READING, SHELF-READING) z))
WHERE [id] ∧ x.shelf_id ≠ y.shelf_id ∧ x.shelf_id = z.shelf_id
WITHIN 1 hour

The query specifies that a misplacement case consists of a reading
of an item at Shelf 1, followed by a reading of the same item at
Shelf 2, which is not followed by any reading of the item at a
checkout counter or back at shelf 1. The predicate “x.shelf_id ≠
y.shelf_id” ensures that the two first SHELF-READINGs refer to
different shelves. The predicate “x.shelf_id = z.shelf_id”, with z
referring to a negative component of SEQ, ensures that if the ANY
operator returns a SHELF-READING, the reading is not from Shelf 1.

Healthcare: The pharmaceutical industry is moving toward a
standard in which RFID tags will be placed on pill bottles, afford-
ing a healthcare system an opportunity to develop solutions for
medical compliance. When RFID readers are placed in the envi-
ronment where medicines are kept, the system can track if the right
medications are being taken at the right time by the right person
[14]. For example, the following query can be used to raise an alert
if a patient has taken an overdose of antibiotics in the past 4 hours.

EVENT SEQ(MEDICINETAKEN x, MEDICINETAKEN y)
WHERE [name=‘John’] ∧ [medicine=‘Antibiotics’] ∧

(x.amount + y.amount) > 1000
WITHIN 4 hours

Another example would be to detect if John has taken other medi-
cines that adversely interact with the antibiotics in his prescription.
Many other examples where our language is applicable include
safeguarding equipment use, activity monitoring for the elderly,
etc. Queries for them are omitted due to space constraints.

2.4 Limitations
It is important to note that the goal of this work is to provide an
event language that is compact yet useful to today’s RFID-based
monitoring applications. Our language currently has several limita-
tions, which we will address in our future work.

Hierarchy of complex event types. Our language allows queries
to transform events from primitive types to complex types, but
currently not from complex types to (even more) complex types.
The latter can be achieved by adding language constructs that feed
the output a query as input to another. In this paper, however, we
focus on the former simpler problem and seek a fast implementa-
tion of it, which serves as an important step towards more sophisti-
cated processing that real-world applications may later require.

Total order on events. Recall that our language assumes total
ordering of events. A known issue with this assumption [30] arises
in the following scenario: A composite event usually obtains its
timestamp from one of its primitive events; when such composite
events are mixed together with primitive events to detect more
complex events, the assumption of total order on all events no
longer holds. This, again, will be considered when we address full
compositionality of the language.

Aggregates. Our language can be extended to support aggre-
gates such as count() and avg(). As aggregates over streams have
been extensively studied in the field of stream processing [2][7]
[9][13], we expect to adopt many stream processing techniques in
our system. This topic, however, is beyond the scope of this paper.

3 A QUERY PLAN-BASED APPROACH
Having described our complex event language, we next present a
query plan-based approach to implementing this language. Our
approach is motivated by the observation that most existing event
systems use implementation models based on fixed data structures
such as trees [6], directed graphs [18], finite automata [16], or Petri
nets [15]. In these models, query execution strictly follows the
internal organization of a specific data structure and is unable to
explore alternative approaches to evaluating the query. Further-
more, we find it hard to extend such implementations to support a
richer query language for emerging advanced applications. In con-

trast, our approach employs an abstraction of complex event proc-
essing that is a dataflow paradigm with pipelined operators as in
relational query processing. As such, it provides flexibility in
query execution, ample opportunities for optimization, and exten-
sibility as the event language evolves.

In our new abstraction of complex event processing, a key data
structure for the dataflow is the query-defined event sequence.
Such event sequences play a central role in translating the query
input into the query output. Constructing these sequences, how-
ever, has either been done using expensive join operations in
stream systems, or been ignored or under-addressed in other event-
related systems. Our approach is unique in its way of handling
these sequences: We devise native operators to read query-specific
event sequences efficiently from continuously arriving events.
These operators are used to form the foundation of each plan, feed-
ing the event sequences to the subsequent operators. This arrange-
ment allows the subsequent operators to be implemented by lever-
aging existing (e.g., relational) query processing techniques.

In this section, we describe basic query plans. A large suite of
optimization techniques will be presented in the next section.

3.1 A Basic Query Plan
A query plan in SASE consists of a subset of six operators: se-
quence scan, sequence construction, selection, window, negation,
and transformation. For a concrete example, consider query Q3:
Q3: EVENT SEQ(A x1, B x2, ! (C x3), D x4)

WHERE [attr1, attr2] ∧ x1.attr3 = ‘1’ ∧ x1.attr4 < x4.attr4
WITHIN T

In this query, A, B, C, D represent four distinct event types. The
WHERE clause contains a set of conjunctive predicates: (1) two
equivalence tests on the respective attributes denoted by attr1 and
attr2, which are common attributes of A, B, C, and D, (2) a simple
predicate on attr3 of a type A event, and (3) a parameterized predi-
cate that compares a type A event and a type D event on attr4 using
‘<’. The letter T represents a specified window size.

A basic plan for Q3 and a dataflow created from an example
event stream are illustrated in Figure 1. In the event stream pre-
sented at the bottom of the figure, a lower-case letter (e.g., ‘a’)
represents an event of the type denoted by its corresponding upper-
case letter (e.g., ‘A’), and the number below each event is its as-
signed timestamp. Above the flow, rounded rectangles represent
operators in the plan. From bottom-up, these operators are:

Figure 1: An Execution Plan for Query Q3

Sequence scan and construction (SSC). Sequence scan and
sequence construction are always used together, forming a compo-
nent referred to as SSC. For a query using the SEQ construct in our
language, SSC handles the positive components of SEQ, which

make up a sub-sequence type of the original SEQ specification. For
example, the sub-sequence type for Q3 is (A, B, D), which results
from removing “!C” from SEQ(A, B, !C, D).

SSC transforms a stream of events into a stream of event se-
quences; each event sequence represents a unique match of the
SSC sub-sequence type. In Figure 1, the output of SSC is illus-
trated with seven event sequences created from the bottom stream.
Each event sequence consists of three fields corresponding to the
respective components of the sub-sequence type (A, B, D). The
event in each field is denoted by a lower-case letter for its type and
a subscript for its timestamp.

Internally, SSC contains a sequence scan operator (SS→) that
scans the event stream to detect matches of a sub-sequence type,
and a sequence construction operator (SC←) that searches back-
ward (in a data structure summarizing the event stream) to create
all event sequences. They will be explained in detail shortly.

Selection (σ). As in relational query processing, a selection
operator here filters each event sequence by applying all the predi-
cates including simple and parameterized ones. If the evaluation
succeeds, the event sequence is emitted to the output. In Figure 1,
three out of seven input event sequences pass the selection.

Window (WD). The window operator imposes the constraint
of the WITHIN clause. For each event sequence, it checks if the
temporal difference between the first and last events is less than
the specified window T. In the example in Figure 1, T is assumed
to 6, and as a result, the second input event sequence is filtered out.

Negation (NG). The negation operator handles the negative
components of a SEQ construct which have been ignored by SSC.
In the example of Figure 1, for each input event sequence, this
operator checks if there exists a ‘c’ event that arrived between the
‘b’ and ‘d’ events in the sequence and has the same value of attr1
as the ‘b’ event (thus the same value as the ‘a’ and ‘d’ events). If
such a ‘c’ event exists, the event sequence is removed from output.
In Figure 1, the second input event sequence to NG is filtered out.

Transformation (TF). Finally, the transformation operator
converts each event sequence to a composite event by concatenat-
ing attributes of all the events in the sequence.

The execution of the above operators is pipelined: if an arriv-
ing event constitutes a match of a query with some previous
events, a corresponding event sequence is emitted from SSC right
away, pipelined through the subsequence operators, and added to
the final output. Such processing is crucial to returning results in a
timely fashion so that monitoring applications can trigger fast reac-
tion to the current situation. The implementation of selection, win-
dow, and transformation is straightforward. In the following, we
explain the implementation of SSC and negation in more detail.

3.2 Sequence Scan and Construction
For sequence scan, a useful approach has been to adopt Non-
deterministic Finite Automata (NFA) to represent the structure of
an event sequence [11][16]. Furthermore, the NFA-based approach
can be extended to handle sequence construction, as proposed in
YFilter [11] in the context of XML message filtering. We adapted
these techniques in a basic implementation of sequence scan and
construction (SSC), which is sketched in this subsection. Our main
contributions, however, lie in (1) a large set of optimizations de-
veloped in this framework for event processing over streams (as
opposed to small XML messages), and (2) efficient support for
many features missing in XML filtering such as parameterization,
windowing, and negation. These advanced techniques are pre-
sented in Sections 3.3 and 4.

Sequence scan (SS→). For each SSC sub-sequence type, an
NFA is created by mapping successive event types to successive
NFA states. For example, Figure 2 shows an NFA created for the
sub-sequence type (A, B, D), where state 0 is the starting state,

state 1 is for successful recognition of an A event, state 2 is for the
recognition of a B event after that, and likewise state 3 is for the
recognition of a D event after the B event.1 State 3, denoted using
two concentric circles, is the (only) accepting state of the NFA.
Note that states 1 and 2 contain a self-loop marked by a wildcard
‘*’. Given an event, these states allow the NFA to loop at the same
state, which can occur simultaneously with a forward transition if
the type of the event matches that associated with the transition.

0
1
2
3

0

0
1

0
1

0
1
2

0
1
2

0
1
2

0
1
2
3

0
1
2

0
1
2
3

0 3 1

*

2

*

A B D

Sub-sequence type

NFA

(A, B, D)

a1 c2 b3 a4 d5 b6 d7 c8 d9

Runtime
stack

Events
Timeline

Figure 2: NFA-based Sequence Scan and Construction

a1 b3 d9

a1 b6 d9
a4 b6 d9To keep track of these simultaneous states, a runtime stack is

used to record the set of active states at a certain point and how this
set leads to a new set of active states as an event arrives. Figure 2
shows the evolution of a runtime stack (from left to right) for the
event stream shown at the bottom. Each active state instance in the
stack has one or two predecessor pointers specifying the active
state instance(s) that it came from. State 0 is made active at each
point to initiate a new search for every arriving ‘a’ event.

Sequence construction (SC←). Once an accepting state is
reached during sequence scan, sequence construction is invoked to
create the event sequences that the most recent event has com-
pleted. An approach to sequence construction is to extract from the
runtime stack a single-source DAG (Directed Acyclic Graph) that
starts at an instance of the accepting state in the rightmost cell of
the stack and traverses back along the predecessor pointers until
reaching instances of the starting state. Such a DAG is illustrated
using thick letters and edges in the stack in Figure 2, at the instant
when the event d9 is encountered. Event sequences can be gener-
ated by enumerating all possible paths from the source to the sinks
of the DAG. For each path, edges that connect two instances of the
same state (representing a self-loop) are omitted; the remaining
edges produce a unique event sequence, which contains the events
that triggered the transitions denoted by those edges (see [11] for
more details). Figure 2 also shows the three event sequences cre-
ated from the highlighted DAG in the stack.

A simple algorithm for searching a DAG [11] has the complex-
ity of O(P), where P is the number of paths extracted from the
DAG and in the worst case can be exponential. We improved on it
by using a single Depth First Search, thus reducing the complexity
to O(E), where E is the number of edges in the DAG. Since each
active state instance has at most two predecessors, E is bounded by
O(2LS), where L is the length of the sub-sequence type (thus the
number of the states in the NFA), and S is the number of events in
the stream. In practice, S can be set to the window size W by using
a simple optimization that dynamically checks window constrains
in the DAG search, thus yielding the O(2LW) complexity.

3.3 Negation
As mentioned previously, a negation operator (NG) handles the
negative components of the SEQ construct in a query which have
been ignored by SSC. For each input event sequence, NG performs
two tasks for each negative component: (1) check if an event of the
type specified in the negative component appeared in a specific
time interval; and (2) if such an event exists, check if it satisfies all
the relevant predicates. Any event that passes both checks evalu-
ates the current event sequence to False. In the following, we focus
on the compile-time and runtime support for task (1). The support
for task (2) is straightforward and will not be further discussed.

At compile-time, the time interval for task (1) is generated as
follows: For a sequence such as SEQ(A, !B, C), the interval is de-
fined as (A.timestamp, C.timestamp), where A and C are bound to
the ‘a’ event and the ‘c’ event contained in each event sequence.
For SEQ(!A, B), the window size T is used to set the interval to be

1 For a sub-sequence type that contains an ANY() operator, e.g., (A, B,
ANY(D, E)), a simple extension is to label the corresponding transition with
the set of event types connected using “or”.

(B.timestamp-T, B.timestamp). The handling of SEQ(A, !B) is
somewhat special. Recall that given a window T, this query disal-
lows a ‘b’ event to follow an ‘a’ event within the window T (as
described in Section 2.2.2). Accordingly, the interval created for
this query is (A.timestamp, A.timestamp+T). In addition, the nega-
tion operator is marked as “postponed by T”, which indicates to the
runtime system that the evaluation of each event sequence needs to
be postponed by a period of length T after its arrival.

The runtime system provides indexing support in addition to
postponed evaluation (if necessary). Given a time interval, retriev-
ing all the events that occurred in the interval can be supported by
using a standard relational indexing technique. For performance
reasons, we use an advanced technique called partitioned indexing
in this work. The idea is to partition an event stream by timestamp.
If δ is the partition size, all the events of timestamp ∈ (δ*i,
δ*(i+1)] go into partition i. For each event type involved in nega-
tion, say ‘B’, we build a separate index over each partition. More
specifically, when a type B event arrives, if it belongs to the most
recent partition, it is inserted to the type B index over this partition;
otherwise, a new partition is created and the event becomes the
first entry in the type B index. Then during evaluation, given a
time interval, a negation operator quickly identifies all the parti-
tions that potentially overlap with this interval, and probes the type
B indexes over these partitions to retrieve all the relevant ‘b’
events. A practical benefit of this approach is that we can garbage-
collect an entire partition with all its indexes in one step, once the
partition has completely fallen out of the sliding window.

4 OPTIMIZATION TECHNIQUES
We presented a basic query plan for complex event processing in
the previous section. This plan has not been optimized to address
two salient issues that arise in stream-based event processing:
large sliding windows and large intermediate result sizes. As men-
tioned in Introduction, large sliding windows are commonly used
in monitoring applications. Sequence construction from events
widely dispersed in large windows can be an expensive operation.
Moreover, if a large fraction of event sequences created cannot
lead to final results, tremendous work in sequence construction is
wasted and high overhead is incurred in subsequent operators. As
in traditional database systems, such intermediate result sizes af-
fect query processing performance. Since stream-based processing
usually has stringent performance requirements, reduction of in-
termediate result sizes is of paramount importance in our context.

In this section, we explore alternative query plans to optimize
complex event processing for the above two issues. We develop
intra-operator optimizations to expedite sequence scan and con-
struction (SSC) in the presence of large windows, and inter-
operator optimizations that strategically push predicates and win-
dows down to SSC to reduce intermediate result sizes. A mecha-
nism shared by all these optimizations is to index relevant events
both in temporal order and across value-based partitions.

0 31

*

2

*

A B D NFA

a1 c2 b3 a4 d5 b6 d7 c8 d9

Active
Instance
Stacks

Events
Timeline

Figure 3: SSC using Active Instance Stacks

a1 b3 d9
a1 b6 d9

a4 b6 d9

(.) a1

(.) a4

 (a1) b3

 (a4) b6

(b3) d5

(b6) d7

(b6) d9

NFA

a1 c2 b3 a4 d5 b6 d7 c8 d9

Partitioned
Active In-
stance stacks

Events

(.) a1 (a1) b3 (b3) d5

(b3) b7

Values of attr1 1 1 1 2 1 2 1 2 2

(bb) d9(.) a4 (a4) b6 a4 b6 d9

partition
‘1’

partition
‘2’

0 3 1

*

2

*

A B D

attr1

Figure 4: Partitioned Active Instance Stacks (PAIS) 4.1 Optimizing Sequence Scan and Construction
As described in Section 3.2, the basic algorithm for sequence con-
struction searches the runtime stack from the most recent event all
the way back to the oldest relevant event (the oldest event in the
current window that contributes to the query). This can be highly
inefficient when queries use large windows. Therefore, we employ
an auxiliary data structure, Active Instance Stack (AIS),2 to expe-
dite sequence construction. The algorithm works as follows:

Sequence Scan. In sequence scan, the NFA execution runs as
before. In addition to that, an active instance stack is created at
each NFA state to store the events that triggered transitions to this
state; such events are referred to as active instances of this state.
Following the example in Figure 2, Figure 3 shows the content of
three AIS stacks after the event stream at the bottom of the figure
is received. In each stack, from top-down, the active instances (in
bold letters) represent the temporal order of their occurrences.
From left to right, a series of three stacks capture the sequencing
requirements of the query. Between adjacent stacks, the temporal
order relevant to the query is encoded using an extra field of each
active instance e, which stores the most recent instance in the pre-
vious stack (RIP) at the moment when e occurred. Take the active
instance b6 in the B stack in Figure 3. The most recent instance in
the A stack before b6 is a4, so the RIP field of b6 is set to a4, as
shown in the ‘(’ ‘)’ preceding b6. This RIP field tells that any in-
stances in the A stack up to a4 can be matched with b6 if event
sequences involving b6 need to be created. The information of RIP
can be visualized by drawing two virtual edges from b6 to a1 and a4
(shown by the arrows in Figure 3).

Sequence Construction. Sequence construction is initiated for
each active instance of the accepting state. With active instance
stacks, the construction is simply done by a depth first search in
the DAG that is rooted at this instance and contains all the virtual
edges reachable from the root (note that our implementation only
uses the RIP field of each active instance without creating the vir-
tual edges). Each root-to-leaf path in the DAG corresponds to one
unique event sequence. The three event sequences created for the
active instance d9 are also shown in Figure 3.

4.2 Pushing Predicates Down
Having described active instance stacks for improving sequence
construction, we now turn to address intermediate results sizes. An
important optimization for this purpose is to evaluate predicates
early in a query plan as in database systems. In SASE, we develop
a series of optimizations to strategically push simple and param-
eterized predicates down to SSC.

2 Active Instance Stacks (AIS) in SASE appear similar to PathStacks for
XML pattern matching [3] in stack arrangements. The stack operations,
however, differ significantly: the content of an AIS is determined by NFA
transitions and advanced transition filtering presented throughout this sec-
tion, while the content of a PathStack comes from XML index lookup and
node comparison.

4.2.1 Pushing an equivalence test down to SSC
In RFID-enabled applications, queries commonly use equivalence
tests to correlate events that refer to, for example, the same RFID
tag, the same patient, the same medicine, etc. Evaluating such
predicates in SSC can prevent many unnecessary event sequences
from being constructed. In the following, we present a scheme for
pushing one equivalence test down to the sequence scan operator.

An equivalence test essentially partitions an event stream to
many small ones; events in each partition have the same value for
the attribute used in the equivalence test (referred to as the equiva-
lence attribute). One straightforward solution is to partition the
stream first and then run the query plan bottom-up for each parti-
tion. For better performance, we use an advanced technique, called
Partitioned Active Instance Stack (PAIS), that provides two bene-
fits: (1) it simultaneously creates the partitions and builds a series
of active instance stacks for each partition during sequence scan,
and (2) it incurs no overhead (e.g., partitioning cost) for those
events whose types are irrelevant to a query.

The basic idea of PAIS is that at each state, active instances are
partitioned based on their values of the equivalence attribute; an
active instance stack is created for active instances in the same
partition. Furthermore, this stack is connected to the stack in the
corresponding partition at the previous state using the AIS algo-
rithm in Section 4.1. Figure 4 shows such an arrangement for the
SSC sub-sequence type and event stream used in the previous ex-
amples. The equivalence test pushed to SSC is on the attribute
attr1. The value of attr1 in each event is shown below the event in
the stream. The PAIS algorithm is based on two modifications of
the AIS algorithm during sequence scan, described as follows:

Attribute-based transition filtering: At any state except the
start state, when the NFA decides to make a transition for the cur-
rent event (e.g., transition from state 1 for b6), PAIS retrieves the
value of the equivalence attribute from the event (e.g., value ‘2’
from b6) and checks if the active instance stack in the correspond-
ing partition at the current state (e.g., partition ‘2’ at state 1) is
empty. A non-empty stack means previous events of the same
attribute value (e.g., a4) exist, so the transition to the new state is
necessary. Otherwise, the current event is dropped.

Stack maintenance: Once a transition is made, the current
event is added to the active instance stack at the new state based on
its value (e.g., b6 is added to the stack in partition ‘2’ at state 2),
and its field of the most recent event at the previous state is set to
the last instance in the corresponding partition at the previous state
(e.g., set to a4 for b6).

With PAIS, sequence construction is only performed in stacks
in the same partition, producing significantly fewer results. In
Figure 4, the construction for d9 only produces one event sequence,
compared to three before.
4.2.2 Pushing multiple equivalence tests down to SSC
Queries can contain multiple equivalence tests, for example, to
correlate events that refer to the same patient taking the same
medication but at different points in time. Intermediate result sizes

a1 a2 a3 b4 b5 b6

PAIS 1 for
Attribute 1

Events

Figure 5: Multiple Partitioned Active Instance Stacks (Multi-PAIS)

a1 b6
a3 b6

 (a1) b4

(a3) b4

(a3) b6

(.) a1

Values of attr1 1 2 1 1 1 1

(.) a2

partition
‘1’

partition
‘2’

0 2 A B

attr1

2 3 3 2 1 3 Values of attr2

(.) a1

 (.) a3

partition
‘2’

partition
‘3’

attr2

(.) a2
(.) a3

 (a3) b6

PAIS 2 for
Attribute 2 a2 b6

a3 b6

1

*

NFA

can be further reduced if all equivalence tests can be pushed down
to SSC. A naïve extension to the PAIS algorithm is to create multi-
attribute partitions and build a series of active path stacks for each
partition. This approach, however, does not scale as the number of
partitions grows exponentially, incurring high memory overhead
when the domain size of each equivalence attribute is large. Next,
we propose two alternative approaches to pushing multiple equiva-
lence tests to SSC without incurring significant memory overhead.

Eager Filtering in SS→. The first approach, called Multi-
PAIS, pushes all equivalence tests to sequence scan, in hopes to
filter more events in the “transition filtering” step of the PAIS
algorithm. For ease of exposition, we consider a simple sub-
sequence type (A, B) and two equivalence tests on attr1 and attr2.
Figure 5 shows the PAIS arrangement for it: at each NFA state, a
collection of partitioned active instance stacks, denoted as PAISi, is
created for each equivalence attribute attri. To understand the con-
tent of these stacks, we describe how the stacks are constructed
using the Multi-PAIS algorithm:

Cross-attribute transition filtering: At any state except the start
state, when the NFA suggests a transition for the current event
(e.g., a transition for b6 from state 1), the event is filtered by (1) for
each attri, probing PAISi at the current state (e.g., PAIS1 and PAIS2
at state 1) and retrieving the relevant stack, denoted as stacki, and
(2) intersecting all the stacki (i=1, 2, …). A non-empty result of the
intersection means for the current event (e.g., b6) there is a previ-
ous event (e.g., a3) that matches on all equivalence attributes. In
the positive case, the transition is made. In the example of Figure
5, the cross-attribute filtering fails for b5, so it is dropped. Note
that b5 can not be filtered if we only have a PAIS over attr1.

Multi-stack maintenance: At the new state after the transition,
the current event is added to the appropriate stack in each PAISi for
attri. For example, at state 2, b6 is added to the stack in partition ‘1’
of PAIS1 and the stack in partition ‘3’ of PAIS2.

Although Multi-PAIS performs aggressive filtering in se-
quence scan, superfluous results can be produced in sequence con-
struction. Here, sequence construction can be run in any of the
PAISi (i=1, 2, …). Back to the example in Figure 5, no matter
which PAISi we choose, two event sequences are created for b6,
although only a3 actually matches b6 on both attr1 and attr2. Take
PAIS1 for example: b6 is erroneously matched with a1, because
they have the same value of attr1—this is exactly what PAIS1 tries
to remember, disregarding the information of other attributes. This
reveals the problem of “lossy” encoding when multiple PAISs are
created separately for individual attributes. This problem cannot be
avoided without creating multi-attribute partitions. As a result, the
selection operator outside SSC is still needed to filter out the su-
perfluous results created by the Multi-PAIS algorithm.

Dynamic Filtering in SC←. The second approach, Dynamic
Filtering, pushes one equivalence test (the most selective one
when statistics is available) to sequence scan, and then pushes all
other equivalence tests to sequence construction. These equiva-
lence tests are performed in the search over the DAG embedded in
the active instance stacks (see Section 4.1). Specifically, if in-
stances on a root-to-leaf path in the DAG have the same values for
each equivalence attribute, an event sequence is created; otherwise,
the path is ignored. The further details are omitted here due to
space constraints. Compared to Multi-PAIS, Dynamic Filtering
cannot filter as many events in sequence scan, thus having more
instances in the stacks, but does not need to pay for the overhead of
cross-attribute transition filtering and multi-stack maintenance.

SASE can also push simple predicates (i.e., predicates applied
to individual events) to sequence scan in SSC. The details are
omitted in the interest of space.

4.3 Pushing Windows Down
Similar to predicates, window constraints can also be evaluated
early in SSC to reduce the number of event sequences created. As
mentioned in Section 3.2, windows can be pushed to sequence
construction (SC←) that uses Depth-First-Search (DFS) over a
DAG contained in the runtime stack. Similarly, when active in-
stance stacks are used, windows can also be dynamically checked
in the DFS over the DAG embedded in the active instance stacks.
We call this algorithm Windows in SC. We also offer a technique
that further pushes windows down to sequence scan (SS→), thus
referred to as Windows in SS. This technique offers two benefits:
(1) it performs window-based filtering of events, so fewer events
are actually added to active instance stacks; and (2) it dynamically
prunes active instance stacks by removing events that have fallen
out of the sliding window. The latter is important in stream proc-
essing where runtime data structures need to be pruned to avoid
memory depletion. We omit the details due to space limitations.

Windows in SS and Windows in SC can be used together: The
former filters some of the events so they are not added to active
instance stacks and prunes expired instances from stacks. The latter
searches those stacks and performs window checking on-the-fly for
each event sequence to be generated.

Figure 6: An Optimized Plan for Query Q3

4.4 Putting It All Together
Now we apply the optimization techniques presented in this sec-
tion to Query Q3 (from Section 3.1). A resulting plan is shown in
Figure 6. Compared to the basic plan in Figure 1, this plan has the
following differences: (1) the window operator is pushed to both
SS→ and SC←, as described above; (2) the equivalence test over
attr1 (assumed to be the more selective one between attr1 and attr2)
is pushed down to SS→; (3) the simple predicate A.attr3 = ‘1’ is
also pushed to SS→; and (4) the equivalence test over attr2 is
pushed to SC←, instead. Figure 6 also shows a dataflow created

for the event stream at the bottom. Here, SSC in the optimized plan
only produces two event sequences (as opposed to seven in Figure
1), so the intermediate result sizes have been greatly reduced.

5 PERFORMANCE EVALUATION
In this section, we present a detailed performance analysis of
SASE. We demonstrate the effectiveness of its query processing
and optimization techniques. We also compare SASE to a state-of-
the-art stream processor to provide insights into the strengths and
limitations of different design and implementation strategies.

5.1 Experimental Setup
We implemented all the techniques presented in the previous sec-
tions in a Java-based prototype system. All the experiments were
performed on a workstation with a Pentium III 1.4 Ghz processor
and 1.5 GB memory running Sun J2RE 1.5 on Fedora Linux
2.6.12. We set the JVM maximum allocation pool to 1 GB, so that
virtual memory activity had no influence on the results.

To test the system, we implemented an event generator that
creates a stream of events using the parameters shown in Table 1.
In our experiments, we considered 20 events types and 5 attributes
for each event type excluding the timestamp. For each attribute, the
number of possible values this attribute can take (the domain size)
was chosen from the range [10, 10,000]. We did not consider
events with more attributes because the additional attributes are not
used in our queries and can be projected out before entering SASE.

Table 1: Parameters for event generation
Parameter Description Values used
T Number of event types 20
θ1 Zipf distribution of occurrences of event types 0
A Number of attributes per event 5
Vi (i=1…5) Number of values allowed for attribute attri [10, 10,000]

We also created a query generator based on the parameters
listed in Table 2. Among them, EP specifies the number of equiva-
lence tests (each contains equality comparisons across all events in
a sequence on a specific attribute), and IP determines the number
of other parameterized predicates each of which is an inequality
comparison between two events. The size of the sliding window,
W, is specified using the number of events.

Table 2: Parameters for query generation
Parameter Description Values used
L Length of the sequence in each query 2-6
θ2 Zipf distribution of event types in a sequence step 0
EP Num. of equivalence tests per query 1-2
IP Num. of other parameterized predicates per query 0-1
SP Num. of simple predicates per query 0-1
N Num. of negations in the sequence 0-2
W Window size 10K-100K

In this study, we define query selectivity as the number of re-
sults generated per event (averaged over a sequence of events).
Based on probability theory, we derived formulas to approximate
true query selectivity using our query workload parameters. For
example, the formula below is for a query with one equivalence
test over attri and no negations.

Query Selectivity = (W choose L)/(TL ∗ Vi
L-1 ∗ W) (1)

In our experiments, we used such formulas to choose appropriate
settings in data and query generation to control query selectivity.

The performance metric used in all our experiments is
throughput, that is, the number of events processed per second. In
each run of an experiment, we used an execution model that
switches between event generation and event processing, and com-
puted throughput as follows:

Repeat

(1) Create a batch of W events based on current configuration;
(2) Start stopwatch;
(3) Execute on the current batch;
(4) Stop stopwatch;
(5) Compute throughput as an average over the last 6 batches;
Until throughput converges;

The criterion for convergence is such that the difference between
the throughput computed for the current batch and that for the
previous batch is within a threshold (set to 5%), and this trend
holds true for 3 successive batches.

5.2 Optimizations of Sequence Construction
We begin our study by examining the effectiveness of our optimi-
zation of sequence scan and construction (SSC). We compare two
algorithms: the Basic algorithm (presented in Section 3.2) that
constructs event sequences from the runtime stack used by the
NFA,3 and the AIS algorithm (presented in Section 4.1) that builds
active instance stacks for sequence construction.

In this set of experiments, we used the following template for
creating queries: EVENT SEQ(E1, E2, … , EL) WHERE [attr1] WITHIN
W, where E1, E2, … EL represent different event types. Each query
contains a single equivalence test over attribute attr1. In order to
decouple the impact of optimizations for predicate evaluation from
this study, we did not evaluate the equivalence test in this set of
experiments. Instead, we “simulated” the effect of the equivalence
test on query selectivity by increasing the number of event types
by a factor of V1

(L-1)/L (derived from formula (1)). Predicate
evaluation is the focus of the next set of experiments. We pushed
windows down to SSC for their evaluation.

Experiment 1-Varying domain size V1. In the first experi-
ment, we considered a modest window size of 10,000, and exam-
ined the performance of the two algorithms as the query processing
load varies within the fixed window. To do so, we fixed the path
length at 3, and varied the domain size V1 of attr1 (used in the
equivalence test) from 100 to 10,000. In this range, the query se-
lectivity decreases from 0.2 (one result every 5 events, an ex-
tremely high number) to 0.2x10-4 (one result every 50,000 events).

Figure 8 shows the throughput results of the two algorithms.
Note that the X-axis is presented in a logarithmic scale. As can be
seen, AIS outperforms Basic by a large factor when the domain
size is relatively small, e.g., x18 at the point of 100. In the range of
small domain sizes, sequence construction is invoked frequently
and significant numbers of results are generated in each invocation.
As Basic has a cost proportional to the window size for sequence
construction, frequent sequence construction magnifies its over-
head. AIS avoids this problem by using active instance stacks,
resulting in remarkably improved performance. As the domain size
increases, both algorithms improve, because the number of query
results decreases. They become close at the point of 10,000 where
less than 1 result is created over each period of 10,000 events.

Experiment 2-Varying window size W: In this experiment,
we investigate each algorithm’s sensitivity to large window sizes.
We fixed V1 at 10,000 and L at 3, and varied W from 10,000 up to
100,000. As we set V1 large, query selectivity is high and W only
has a modest impact on it, e.g., from 0.2x10-4 to 0.2x10-2.

The results are shown in Figure 9. As W increases, the Basic
algorithm decreases its throughput much faster than the AIS algo-
rithm. The reasons are two-fold. First, sequence construction in
Basic incurs a cost linear to W, whereas AIS searches a DAG em-
bedded in the active instance stacks, whose depth is only L. Sec-
ond, the runtime stack that Basic uses grows large with increasing

3 The basic algorithm is an improved version of YFilter [11]. Although we
did not directly compare to YFilter, the results reported here provide in-
sights into the performance gains that SASE may have over YFilter.

values of W, causing significant memory overhead. With active
instance stacks, AIS eliminates the need of using the runtime stack
other than the top element for the most recent event, thus avoiding
the penalty of excessive memory usage.

5.3 Optimizations for Predicate Evaluation
In this set of experiments, we evaluate the effectiveness of our
techniques for pushing predicates down to SSC to reduce interme-
diate result sizes. For query generation, we added various predi-
cates to the basic template: EVENT SEQ(E1, E2, E3) WHERE [attr1]
WITHIN 10000. We used AIS for sequence construction and pushed
windows down to SSC in all these experiments.

In an initial experiment, we evaluated the PAIS algorithm (as
described in Section 4.2.1) for pushing the first equivalence test
down to the sequence scan operator (SS→) in SSC. We compared
it to a basic query plan that evaluates predicates in the selection
operator outside SSC. The latter actually could not complete the
experiment as it created too many (e.g., hundreds of millions of)
intermediate results. These initial results show that pushing at least
one equivalence test down to SSC is a must. In the following, we
investigate the efficient evaluation of additional predicates.

Experiment 3-Two equivalence tests: In this experiment, we
added a second equivalence test [attr2] to the basic query template,
and compared three strategies to evaluate it: (1) evaluating it in
Selection outside SSC, (2) pushing it all the way down to sequence
scan (SS→) using the Multi-PAIS algorithm (see 4.2.2), and (3)
pushing it down to sequence construction (SC←) using the Dy-
namic Filtering algorithm (also see Section 4.2.2). Assuming that
we can push the more selective equivalence test down to SS→
(when statistics is available), this experiment seeks a strategy ap-
propriate for the second equivalence test corresponding to the se-
lectivity of the first one already pushed down. To do so, we varied
V1 (domain size of attr1) from 10 to 10000 while fixing V2 (domain
size of the attr2) at 20 or 5. In the healthcare scenario, for example,
V1 would be for the patient name and V2 for the medicine name.

The results for V2=20 are reported in Figure 10(a). Again the
X-axis is in a logarithmic scale. This figure shows that Dynamic
Filtering outperforms the other two by a wide margin when the
domain size V1 is relatively small (e.g., ≤500). Surprisingly, by
doing eager filtering in SS→, Multi-PAIS yields throughput even
worse than Selection. As V1 increases, the difference among three
algorithms decreases, as the query selectivity increases. After the
point of 500, three algorithms perform similarly.

The results for small values of V1 are of particular interest.
Two factors contribute to these results. First, in sequence scan,
Dynamic Filtering and Selection only evaluate the 1st equivalence
test, while Multi-PAIS also evaluates the 2nd equivalence test. By
doing so, Multi-PAIS reduces the number of invocations of se-
quence construction (as verified by our profiling results), but at an
extra cost that does not exist in the other two algorithms. Second,
in sequence construction, Multi-PAIS actually creates much more
results than Dynamic Filtering (but somewhat less than Selection),
despite a lower number of invocations. For example, Figure 10(b)
shows the actual number of results (in a logarithmic scale) created
over a period of 10000 events. Due to the lossiness of its stack
encoding, Multi-PAIS creates many superfluous results, as dis-
cussed in Section 4.2.2. In contrast, Dynamic Filtering can filter
out many unnecessary results during sequence construction. Com-
bining both factors, Dynamic Filtering performs the best, and
Multi-PAIS is the worst. The overhead of Multi-PAIS is magnified
in the case of V2=5 where the 2nd equivalence test is less selective.
Details are omitted here in the interest of space.

The results of this experiment imply that if we push down the
more selective equivalence test, say [attr1], to SS→, there are two

main cases to consider for [attr2]: If [attr1] is selective, we can use
any strategy for [attr2]. Otherwise, pushing the even less selective
[attr2] to SS→ is not effective; instead, a better way is to evaluate it
dynamically in SC←. Therefore, we always use Dynamic Filtering
for the 2nd equivalence test in the following experiments.

Experiment 4-Adding more predicates: In the next experi-
ment, we further added simple and generic parameterized predi-
cates. Due to space constraints, we only summarize the results
here: Pushing down simple predicates always helps reduce inter-
mediate results, thus improving throughput. Once equivalence tests
and simple predicates are pushed to SSC, evaluating other param-
eterized predicates in Selection incurs little overhead.

Other experiments. We also ran experiments to evaluate the
techniques for handling windows and negations. We omit details of
these experiments in the interest of space. In summary, pushing
windows down to both sequence scan and sequence construction is
effective in reducing intermediate results. The cost of processing
negation is modest when the intermediate result sizes are small,
and can become more significant otherwise. This suggests that we
might even consider pushing negation down to SSC.

In the rest of this section, SASE was configured based on the
results reported in the above experiments: Specifically, it uses
Active Instance Stacks for sequence construction; for typical que-
ries such as query Q3, it pushes equivalence tests, simple predi-
cates, and windows down to SSC, as illustrated in Figure 6.

5.4 Comparison to TelegraphCQ
In this section, we compare SASE to a relational stream processor,
TelegraphCQ (TCQ) [7], developed at the University of California,
Berkeley. We chose to compare to TCQ because it is a full-fledged
stream processor with the software publicly available. In addition,
TCQ has a well-supported user community, which facilitated this
comparative study.

As TCQ does not support negation, we used a relatively simple
template for query generation: EVENT SEQ(E1, E2, … , EL) WHERE
[attr1 (, attr2)?] WITHIN W. Queries were created based on specific
settings of L, W, V1 (domain sizes of attr1), and V2 (domain size of
attr2), if used. Then, each event query was translated to the TCQ
language. For example, a query created with L=3, W=10,000, and
one equivalence test [attr1] can be expressed in TCQ as:

WITH
R AS (SELECT * FROM ES e WHERE e.event = ‘E1’)
S AS (SELECT * FROM ES e WHERE e.event = ‘E2’)
T AS (SELECT * FROM ES e WHERE e.event = ‘E3’)
(SELECT *
 FROM R r [RANGE BY 10000]

 S s [RANGE BY 10000]
 T t [RANGE BY 10000]

 WHERE r.attr1 = s.attr1 AND r.attr1 = t.attr1 AND
 s.time > r.time AND t.time > s.time)

The TCQ query first uses the WITH clause to create separate
streams for event types E1, E2, and E3 (referred to as event type
streams). It then uses SELECT-FROM-WHERE to express the event
sequence. In the FROM clause, it applies a RANGE BY construct to
each event type stream; the sliding window over the event se-
quence is automatically captured by having ranges of the window
size in each stream. The WHERE clause specifies the equivalence
test and the temporal order of E1, E2, and E3 as join predicates.

We set up the TCQ system as follows. We first confirmed that
although the TCQ server spans multiple processes, all query proc-
essing takes place in a single backend process. Based on this, we
plugged in our code to only measure the performance of the query
processing backend. We also turned off inter-process communica-
tion to make sure that such activity had no effect on our results.
Moreover, we made efforts to help TCQ choose the best plan when

0

10

20

30

40

50

60

100 1000 10000

Domain Size of the 1st Equivalence Attribute

Ev
en

ts
/s

ec
 (x

10
00

)

AIS
Basic

0

10

20

30

40

50

10 100 1000 10000

Domain Size of the 1st Equivalence Attribute

Ev
en

ts
/s

ec
 (x

10
00

)

Dynamic F.
Selection
Multi-PAIS

(10a) Throughput

Figure 8: Varying domain size V1 of the
equivalence attribute

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

Sequence Length

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

SASE
TCQ

Figure 11: Varying sequence length

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Window Size (x10,000)

Ev
en

ts
/s

ec
 (x

10
00

)

AIS
Basic

Figure 9: Varying window size W

0.1

1

10

100

1000

10000

100000

1000000

10 100 1000 10000

Domain Size of the 1st Equivalence Attribute

R
es

ul
ts

 o
f S

C

Selection
Multi-PAIS
Dynamic F.

(10b) Results of sequence construction

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

Domain Size of the 1st Equivalence Attribute

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

SASE 2 equivs
SASE 1 equiv
TCQ 2 equivs
TCQ 1 equiv

Figure 12: Varying domain size V1 of attr1
(2nd equivalence test over attr2 with V2=20)

Figure 10: Three strategies for evaluating a 2nd
equivalence Test (domain size V2=20)

multiple join predicates are available; we achieved this by provid-
ing hints on the most selective join predicate to the optimizer.

The performance metric is still throughput. However, as TCQ
and SASE differ significantly in architecture and implementation
platform, we do not directly report those numbers in this study.
Instead, we report on “normalized throughput” obtained as fol-
lows: as the query processing load changes from light to heavy in
each experiment, we use the throughput for the lightest workload
to normalize other measurements (thus they are all under 1). This
approach not only ensures a fair comparison but also allows us to
gain insights into tradeoffs between various evaluation strategies.

Experiment 5-Varying sequence length L. In this experi-
ment, we investigate each system’s sensitivity to the sequence
length by varying L from 2 to 6. We used one equivalence test over
attr1 with V1=100 (larger values of V1 tend to produce no results
for long sequences). W was set to 10,000.

The results are shown in Figure 11. It can be clearly seen that
as L increases, SASE scales much better than TCQ. Specifically,
TCQ experiences a sharp drop from L=2 to L=3 and degrades to
less than 0.01 when L≥5. In contrast, SASE decreases more grace-
fully and reaches 0.5 with L=6. These results can be explained as
follows. As in most stream processors, TCQ uses an n-way join to
handle an equivalence test over an event sequence. This certainly
incurs high overhead when the sequence length is high. Moreover,
TCQ only considers equality comparisons in joins. Therefore, tem-
poral constraints for sequencing, e.g., “s.time > r.time”, are evalu-
ated only after the join. In contrast, SASE uses the NFA to natu-
rally capture sequencing of events, and the PAIS algorithm to han-
dle the equivalence test during NFA execution, yielding much
better scalability.

Experiment 6-Varying domain size V1. In this experiment,
we compare the performance of SASE and TCQ as query selectiv-
ity varies. We set L to 3 and W to 10,000. We first used one
equivalence test over attr1 and varied the domain size of attr1 (V1)
from 10 to 10,000. The results are shown by the two curves labeled
with “1 equiv” in Figure 12. Note that the measurements were
normalized using the throughput for the rightmost point (e.g.,
10,000). Figure 12 shows that as V1 decreases from 10,000 to 10
(from right to left), the performance of TCQ drops much faster
than SASE. The benefit of SASE over TCQ stems from its ability

to prune more intermediate results. In particular, in the bottom
sequence scan operator, SASE uses the NFA to check sequencing
of events and the PAIS algorithm inlined with the NFA execution
to perform the equivalence test. In contrast, by using a 3-way join
and postponing the evaluation of temporal constraints, TCQ suffers
from significantly increased intermediate results sizes.

We further added a second equivalence test [attr2] to investi-
gate how the two systems would utilize it. The domain size of attr2
(V2) was set to 20. The results are shown by the curves labeled
with “2 equivs” in Figure 12. Both systems perform better now:
SASE significantly improves its performance especially when V1
is relatively small, whereas the performance gain of TCQ is rather
limited. SASE’s behavior is attributed to pushing the second
equivalence test down to sequence construction, which signifi-
cantly reduces the number of event sequences that it generates. The
way that TCQ handles the second equivalence test is to apply its
equality comparisons as selection filters after the corresponding
joins for the first equivalence test. In the case of a 3-way join
among R, S and T over attr1, assuming that R and S are joined first,
the TCQ optimizer is often able to push the filter R.attr2 = S.attr2
right after the join between R and S, thus reducing the work to be
done by the join between S and T. This technique is shown to be
less effective than the Dynamic Filtering algorithm in SASE that
pushes the entire second equivalence test down to SSC.

The above results imply that a relational stream processor such
as TCQ is not designed or optimized for complex event processing.
The approach that SASE takes, in particular, using native operators
to handle event sequences and highly optimized plans to reduce
intermediate result sizes, is indeed necessary. The above results
also prove the specific techniques that SASE uses to be effective
and scalable for complex event processing.

6 RELATED WORK
Much related work has been covered in the previous sections. We
briefly discuss other related work in a broader set of areas below.

Publish/Subscribe. Traditional publish/subscribe systems [1]
[5][12][25] provide predicate-based filtering of individual events.
SASE significantly extends these systems with the ability to handle
correlations among events and transform primitive events into new
composite events. Recent work on advanced pub/sub [10] offers an

expressive language to specify subscriptions spanning multiple
events, similar to the language in SASE. In comparison, it supports
negation in a limited way. Its implementation, based on an NFA-
based mechanism, focuses on multi-query optimization but has not
addressed issues related to creating composite events as final re-
sults and managing intermediate results, whereas SASE uses a
large suite of techniques to handle them for good performance.

Sequence databases. SQL-style languages have been pro-
posed to support order in data with a new data model and an order-
aware algebra [20], and to support sequence queries that perform
time series operations such as computing running aggregates
[27][28]. These languages do not offer flexible use of negation.
The SEQ system [28] uses relational techniques to implement se-
quence queries, whereas SASE uses an NFA-based mechanism and
many optimizations in this framework to handle event sequences.

Event Processors. A few event processors have been recently
developed. CompAS [18] provides a holistic approach to filtering
primitive events and detecting composite events. HiFi [13] aggre-
gates events along a tree-structured network on various temporal
and geographic scales and has limited support for complete event
processing [26]. Siemens RFID middleware [29] offers a temporal
data model and declarative rules for managing RFID data but no
solid implementation. These systems lack the expressiveness to
support our target applications and optimizations for high-volume
event processing.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we presented SASE, a complex event processing
system that efficiently executes monitoring queries over streams of
RFID readings. We first proposed a complex event language that
allows queries to filter and correlate events and transform the rele-
vant ones into new composite events for output. The language
provides features such as sequencing, negation, parameterization,
and windowing necessary for emerging RFID-based monitoring
applications. We then presented a query plan-based approach to
implementing this language, which uses native operators to con-
struct event sequences while leveraging relational techniques for
other processing tasks. We also described a large set of optimiza-
tions for handling large windows and reducing intermediate result
sizes. We demonstrated the effectiveness of SASE in a detailed
performance study. Results of this study show that SASE can
process 40,000 events per second for a highly complex query in a
Java-based implementation. Results obtained from a comparison
between SASE and a state-of-the-art stream processor confirm that
SASE’s native sequence operators and optimized plans provide
much better scalability for demanding workloads.

We plan to continue our research in the following directions.
First, we will extend our language by adding aggregates and ex-
plore issues related to compositionality. Second, it will be useful to
compare SASE to recently developed advanced pub/sub and event
processing systems for insights into the strengths of each approach.
Finally, for deployment in RFID-based applications, we will also
enhance SASE with support for simultaneous queries, disk-based
indexing of events, and distributed event processing.

ACKNOWLEDGEMENTS
We thank Mary Fernandez, Michael Franklin, Tyson Condie, and
the anonymous reviewers for their valuable comments.

8 REFERENCES
[1] Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., and

Chandra, T.D. Matching events in a content-based subscription sys-
tem. In Proc. of Principles of Distributed Computing, 1999.

[2] Arasu, A., Babu, S., and Widom, J. CQL: A language for continuous
queries over streams and relations. In DBPL, 1-19, 2003.

[3] Bruno, N., Koudas, N., and Srivastava, D. Holistic twig joins: Opti-
mal XML pattern matching. In SIGMOD, 310-321, 2002.

[4] Carey, M.J., Livny, M., and Jauhari, R. The HiPAC project: Combin-
ing active databases and timing constraints. In SIGMOD Record,
17(1), 1988.

[5] Carzaniga, A., and Wolf, A.L. Forwarding in a content-based net-
work. In SIGCOMM, 163-174, 2003.

[6] Chakravarthy, S., Krishnaprasad, V., Anwar, E., and Kim, S. Com-
posite events for active databases: Semantics, contexts and detection.
In VLDB, 606-617, 1994.

[7] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J.,
Hellerstein, J.M., Hong, W., et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In CIDR, 2003.

[8] Chandy, K.M., Aydemir, B.E., Karpilovsky, E.M., et al. Event webs
for crisis management. In Proc. of the 2nd IASTED Int’l Conf. on
Communications, Internet and Information Technology, 2003.

[9] Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., et al.
Scalable distributed stream processing. In CIDR, 2003.

[10] Demers, A., Gehrke, J., Hong, M., Riedewald, M., et al. Towards
expressive publish/subscribe systems. In EDBT, 627-644, 2006.

[11] Diao, Y., Altinel, M., Zhang, H., Franklin, M.J., and Fischer, P.M.
Path sharing and predicate evaluation for high-performance XML fil-
tering. TODS, 28(4), 467-516, Dec. 2003.

[12] Fabret, F., Jacobsen, H.A., Llirbat, Pereira, J., Ross, K.A., and Sha-
sha, D. Filtering algorithms and implementation for very fast pub-
lish/subscribe systems. In SIGMOD, 115-126, 2001.

[13] Franklin, M.J., Jeffery, S., Krishnamurthy, S., Reiss, F., Rizvi, S.,
Wu, E., Cooper, O., Edakkunni, A., and Hong, W. Design considera-
tions for high fan-in systems: The HiFi approach. In CIDR, 2005.

[14] Garfinkel, S. and Rosenberg, B. RFID: Applications, security, and
privacy. Addison-Wesley, 2006.

[15] Gatziu, S and Dittrich, K.R. Events in an active object-oriented data-
base system. In Proc of the 1st Int’l Conference on Rules in Database
Systems, 23-39, 1993.

[16] Gehani, N.H., Jagadish, H.V., and Shmueli, O. Composite event
specification in active databases: Model and implementation. In
VLDB, 327-338, 1992.

[17] Galton, A., and Augusto, J. C. Two approaches to event definition. In
Proc. of the 13th Int’l Conference on Database and Expert Systems
Applications (DEXA), 547-556, 2002.

[18] Hinze, A. Efficient filtering of composite events. In Proc. of the
British National Database Conference, 207-225, 2003.

[19] iSpheres. iSpheres EPL server/05 event processing language guide.
http://www.ispheres.com.

[20] Lerner, A. and Shasha, D. AQuery: Query language for ordered data,
optimization techniques, and experiments. In VLDB, 345-356, 2003.

[21] Lieuwen, D. F., Gehani, N., and Arlein, R. The Ode active database:
Trigger semantics and implementation. In ICDE, 412-420, 1996.

[22] Meo, R., Psaila, G., and Ceri, S. Composite events in Chimera. In
EDBT, 56-76, 1996.

[23] Michel, C. and Mé, L. Adele: An attach description language for
knowledge-based intrusion detection. In Proc. of the 16th Int’l Conf.
on Information Security: Trusted Information, 353-368, 2001.

[24] Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M.,
et al. Query processing, approximation, and resource management in
a data stream management system. In CIDR, 2003.

[25] Oki, B., Pfleugl, M., Siegel, A., and Skeen, D. The information bus:
An architecture for extensible distributed systems. In SOSP, 58-68,
1993.

[26] Rizvi, S., Jeffery, S.R., Krishnamurthy, S., Franklin, M.J., Burkhart,
N., et al. Events on the edge. In SIGMOD, 885-887, 2005.

[27] Sadri, R, Zaniolo, C, Zarkesh, A., et al. Expressing and optimizing
sequence queries in database systems. TODS, 29(2), 282-318, 2004.

[28] Seshadri, P., Livny, M., and Ramakrishnan, R. The design and im-
plementation of a sequence database system. In VLDB, 99-110, 1996.

[29] Wang, F. and Liu, Peiya. Temporal management of RFID data. In
VLDB, 1128-1139, 2005.

[30] Zimmer, D. and Unland, R. On the semantics of complex events in
active database management systems. In ICDE, 392-399, 1999.

	1 INTRODUCTION
	2 A COMPLEX EVENT LANGUAGE
	2.1 Event Model
	2.2 SASE Event Language
	2.2.1 Overview of the Language
	2.2.2 Formal Semantics

	2.3 Example Applications
	2.4 Limitations

	3 A QUERY PLAN-BASED APPROACH
	3.1 A Basic Query Plan
	3.2 Sequence Scan and Construction
	3.3 Negation

	4 OPTIMIZATION TECHNIQUES
	4.1 Optimizing Sequence Scan and Construction
	4.2 Pushing Predicates Down
	4.2.1 Pushing an equivalence test down to SSC
	4.2.2 Pushing multiple equivalence tests down to SSC

	4.3 Pushing Windows Down
	4.4 Putting It All Together

	5 PERFORMANCE EVALUATION
	5.1 Experimental Setup
	5.2 Optimizations of Sequence Construction
	5.3 Optimizations for Predicate Evaluation
	5.4 Comparison to TelegraphCQ

	6 RELATED WORK
	7 CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	8 REFERENCES

